{"title":"Continuous reducibility: functions versus relations","authors":"R. Camerlo","doi":"10.4467/20842589rm.19.002.10650","DOIUrl":null,"url":null,"abstract":"It is proved that the Tang-Pequignot reducibility (or reducibility by relatively continuous relations) on a second countable, T0 space X either coincides with the Wadge reducibility for the given topology, or there is no topology on X that can turn it into Wadge reducibility.","PeriodicalId":48992,"journal":{"name":"Reports on Mathematical Logic","volume":"54 1","pages":"45-63"},"PeriodicalIF":0.2000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4467/20842589rm.19.002.10650","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 3
Abstract
It is proved that the Tang-Pequignot reducibility (or reducibility by relatively continuous relations) on a second countable, T0 space X either coincides with the Wadge reducibility for the given topology, or there is no topology on X that can turn it into Wadge reducibility.