Conceptual Optimal Design of Environmentally Friendly Airliners: AReview of Available Methodologies and their Integration into a ConsistentFramework for Everyday Use
{"title":"Conceptual Optimal Design of Environmentally Friendly Airliners: AReview of Available Methodologies and their Integration into a ConsistentFramework for Everyday Use","authors":"Paulo Eduardo C. S. Magalhaes, Bento S. Mattos","doi":"10.4172/2090-4886.1000126","DOIUrl":null,"url":null,"abstract":"Airplane design involves complex system integration and must comply with a set of requirements, which are set up by certification authorities, customers, manufacturing, and that coming from market studies. From the traditional perspective of an airline, an interesting airplane is one that is capable of generating the highest revenue with minimum cost-a maximum profit airplane. In later years, however, the airline industry is swiftly broadening its consideration of what constitutes a nice-to-buy airplane. Not only economics but also environmental considerations are taking part in fleet-planning considerations-a trend spurred by environmental-aware passengers. In a move to comply with this trend, airplane conceptual design has incorporated methodologies for preliminary assessment of airplane noise and emissions. As more approaches become available to address these issues, the choice between the most suitable methodologies becomes tougher. The present work analyzes some methodologies in order to select a subset of them. The objective is the evaluation of such methodologies and their integration into a framework to airliner conceptual design. In order to test the design methodologies and the optimization techniques, the authors selected two test airplane categories: first, a long range, transcontinental jet; and a mid-size regional jet. Design tasks based on optimization with noise footprint, direct operational cost, and emission profile or a combination of them as objectives are presented and analyzed.","PeriodicalId":91517,"journal":{"name":"International journal of sensor networks and data communications","volume":"2015 1","pages":"1-14"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of sensor networks and data communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2090-4886.1000126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Airplane design involves complex system integration and must comply with a set of requirements, which are set up by certification authorities, customers, manufacturing, and that coming from market studies. From the traditional perspective of an airline, an interesting airplane is one that is capable of generating the highest revenue with minimum cost-a maximum profit airplane. In later years, however, the airline industry is swiftly broadening its consideration of what constitutes a nice-to-buy airplane. Not only economics but also environmental considerations are taking part in fleet-planning considerations-a trend spurred by environmental-aware passengers. In a move to comply with this trend, airplane conceptual design has incorporated methodologies for preliminary assessment of airplane noise and emissions. As more approaches become available to address these issues, the choice between the most suitable methodologies becomes tougher. The present work analyzes some methodologies in order to select a subset of them. The objective is the evaluation of such methodologies and their integration into a framework to airliner conceptual design. In order to test the design methodologies and the optimization techniques, the authors selected two test airplane categories: first, a long range, transcontinental jet; and a mid-size regional jet. Design tasks based on optimization with noise footprint, direct operational cost, and emission profile or a combination of them as objectives are presented and analyzed.