M. I. Giassetti, F. S. Maria, M. E. O. A. Assumpção, J. A. Visintin
{"title":"Genetic Engineering and Cloning: Focus on Animal Biotechnology","authors":"M. I. Giassetti, F. S. Maria, M. E. O. A. Assumpção, J. A. Visintin","doi":"10.5772/56071","DOIUrl":null,"url":null,"abstract":"Over the last 35 years the term genetic engineering has been commonly used not only in science but also in others parts of society. Nowadays this name is often associated by the media forensic techniques to solve crimes, paternity, medical diagnosis and, gene mapping and sequencing. The popularization of genetic engineering is consequence of its wide use in laboratories around the world and, developing of modern and efficient techniques. The genetic engineering, often used with trivia, involves sophisticated techniques of gene manipulation, cloning and modification. Many authors consider this term as synonymous as genetic modification, where a synthetic gene or foreign DNA is inserted into an organism of interest. Organism that receives this recombinant DNA is considered as genetically modified (GMO). Its production are summarized in simplified form in five steps: 1) Isolation of interested gene, 2) Construction, gene of interested is joined with promoters (location and control the level of expression), terminator (indicates end of the gene) and expression marker (identify the gene expression), 3) transformation (when the recombinant DNA is inserted into the host organism), 4) Selection (selection of those organisms that express the markers), 5) Insertion verification of recombinant DNA and its expression [1].","PeriodicalId":77144,"journal":{"name":"Genetic engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5772/56071","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/56071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Over the last 35 years the term genetic engineering has been commonly used not only in science but also in others parts of society. Nowadays this name is often associated by the media forensic techniques to solve crimes, paternity, medical diagnosis and, gene mapping and sequencing. The popularization of genetic engineering is consequence of its wide use in laboratories around the world and, developing of modern and efficient techniques. The genetic engineering, often used with trivia, involves sophisticated techniques of gene manipulation, cloning and modification. Many authors consider this term as synonymous as genetic modification, where a synthetic gene or foreign DNA is inserted into an organism of interest. Organism that receives this recombinant DNA is considered as genetically modified (GMO). Its production are summarized in simplified form in five steps: 1) Isolation of interested gene, 2) Construction, gene of interested is joined with promoters (location and control the level of expression), terminator (indicates end of the gene) and expression marker (identify the gene expression), 3) transformation (when the recombinant DNA is inserted into the host organism), 4) Selection (selection of those organisms that express the markers), 5) Insertion verification of recombinant DNA and its expression [1].