{"title":"Pyro and Kinetic Studies of Barium Oxalate Crystals Grown in Agar Gel","authors":"P. Dalal, K. B. Saraf, N. Shimpi, N. R. Shah","doi":"10.4236/JCPT.2012.24023","DOIUrl":null,"url":null,"abstract":"Single crystals of barium oxalate have been grown using gel method at ambient temperature. Thermal characteristics and kinetic parameters of barium oxalate crystals were determined by thermo-gravimetric (TG) analysis under non-isothermal heating conditions. The pyrolysis experiments were performed with increasing temperature up-to 600℃ at heating rate of 5℃, 7℃ and 10℃ in nitrogen gas atmosphere. The pyrolysis curve showed that loss of mass took place mainly in the range of 220℃ - 400℃. At higher temperature there was a significant mass loss due to decomposition of oxalates. Ozawa and Coats & Redfern methods were used to determine the apparent activation energies of material degradation. The apparent activation energies for barium oxalate crystals were obtained 187.42 KJ·mol-1 and 185.4 KJ·mol-1 for the respective methods.","PeriodicalId":64440,"journal":{"name":"结晶过程及技术期刊(英文)","volume":"2012 1","pages":"156-160"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4236/JCPT.2012.24023","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"结晶过程及技术期刊(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4236/JCPT.2012.24023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
Single crystals of barium oxalate have been grown using gel method at ambient temperature. Thermal characteristics and kinetic parameters of barium oxalate crystals were determined by thermo-gravimetric (TG) analysis under non-isothermal heating conditions. The pyrolysis experiments were performed with increasing temperature up-to 600℃ at heating rate of 5℃, 7℃ and 10℃ in nitrogen gas atmosphere. The pyrolysis curve showed that loss of mass took place mainly in the range of 220℃ - 400℃. At higher temperature there was a significant mass loss due to decomposition of oxalates. Ozawa and Coats & Redfern methods were used to determine the apparent activation energies of material degradation. The apparent activation energies for barium oxalate crystals were obtained 187.42 KJ·mol-1 and 185.4 KJ·mol-1 for the respective methods.