Asymptotic Analysis of Mis-Classified Linear Mixed Models

IF 1.5 3区 数学 Q2 STATISTICS & PROBABILITY
Haiqiang Ma, Jiming Jiang
{"title":"Asymptotic Analysis of Mis-Classified Linear Mixed Models","authors":"Haiqiang Ma, Jiming Jiang","doi":"10.5705/ss.202023.0082","DOIUrl":null,"url":null,"abstract":"Analysis of Mis-Classified Linear Mixed Models","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Sinica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5705/ss.202023.0082","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Analysis of Mis-Classified Linear Mixed Models
误分类线性混合模型的渐近分析
研究了类错配对线性混合模型分析的影响。在这里,错误分类意味着与随机效应相关的某些类或组不匹配。这种错误分类问题在现代数据科学中变得越来越普遍,包括有意和无意的错误分类。故意错误规范的一个重要案例与差异隐私有关;而在分类混合模型预测中会出现非故意的误规范。我们的研究表明,当错分类群数的比例在适当意义上渐近可忽略时,最大似然估计量和限制最大似然估计量的标准渐近性质,包括一致性和渐近正态性,在错误分类下仍然有效。仿真研究的实证结果完全支持了我们的理论发现。考虑一个实际数据示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistica Sinica
Statistica Sinica 数学-统计学与概率论
CiteScore
2.10
自引率
0.00%
发文量
82
审稿时长
10.5 months
期刊介绍: Statistica Sinica aims to meet the needs of statisticians in a rapidly changing world. It provides a forum for the publication of innovative work of high quality in all areas of statistics, including theory, methodology and applications. The journal encourages the development and principled use of statistical methodology that is relevant for society, science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信