Forecasting Stock Prices with an Integrated Approach Combining ARIMA and Machine Learning Techniques ARIMAML

A. A. Ibrahim, Bilal Saeed, Marwa A. Fadil
{"title":"Forecasting Stock Prices with an Integrated Approach Combining ARIMA and Machine Learning Techniques ARIMAML","authors":"A. A. Ibrahim, Bilal Saeed, Marwa A. Fadil","doi":"10.4236/jcc.2023.118005","DOIUrl":null,"url":null,"abstract":"Stock market prediction has long been an area of interest for investors, traders, and researchers alike. Accurate forecasting of stock prices is crucial for financial decision-making and risk management. This paper presents a novel approach to predict stock prices by integrating Autoregressive Integrated Moving Average (ARIMA) and Exponential smoothing and Machine Learning (ML) techniques. Our study aims to enhance the predictive accuracy of stock price forecasting, which can significantly impact investment strategies and economic growth in this research paper implement the ARIMAML proposed method to predict the stock prices for Investment Bank of Iraq.","PeriodicalId":67799,"journal":{"name":"电脑和通信(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"电脑和通信(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/jcc.2023.118005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Stock market prediction has long been an area of interest for investors, traders, and researchers alike. Accurate forecasting of stock prices is crucial for financial decision-making and risk management. This paper presents a novel approach to predict stock prices by integrating Autoregressive Integrated Moving Average (ARIMA) and Exponential smoothing and Machine Learning (ML) techniques. Our study aims to enhance the predictive accuracy of stock price forecasting, which can significantly impact investment strategies and economic growth in this research paper implement the ARIMAML proposed method to predict the stock prices for Investment Bank of Iraq.
结合ARIMA和机器学习技术的综合方法预测股票价格
长期以来,股市预测一直是投资者、交易员和研究人员感兴趣的领域。准确预测股票价格对财务决策和风险管理至关重要。本文提出了一种通过整合自回归综合移动平均(ARIMA)和指数平滑和机器学习(ML)技术来预测股票价格的新方法。我们的研究旨在提高股票价格预测的预测精度,这可以显著影响投资策略和经济增长,本文采用ARIMAML提出的方法对伊拉克投资银行的股票价格进行预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
784
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信