Efficient Learning of Nonparametric Directed Acyclic Graph With Statistical Guarantee

IF 1.5 3区 数学 Q2 STATISTICS & PROBABILITY
Yibo Deng, Xin He, Shaogao Lv
{"title":"Efficient Learning of Nonparametric Directed Acyclic Graph With Statistical Guarantee","authors":"Yibo Deng, Xin He, Shaogao Lv","doi":"10.5705/ss.202022.0272","DOIUrl":null,"url":null,"abstract":"Efficient Learning of Nonparametric Directed Acyclic Graph With Statistical Guarantee","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"2019 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Sinica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5705/ss.202022.0272","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient Learning of Nonparametric Directed Acyclic Graph With Statistical Guarantee
具有统计保证的非参数有向无环图的有效学习
有向无环图(DAG)模型被广泛用于表示所收集节点之间的因果关系。本文提出了一种具有一般因果依赖结构的高效一致的DAG学习方法,这与现有的大多数假设因果关系线性依赖的方法形成了鲜明对比。为了方便DAG学习,该方法利用拓扑层的概念,将非参数DAG学习与光滑再现核希尔伯特空间(RKHS)中的核脊回归和学习梯度联系起来,表明通过基于核的估计可以精确地重建非参数DAG的拓扑层,并且通过计算估计的梯度函数可以直接获得父-子关系。所开发的算法在计算上是高效的,因为它试图用解析解来解决一个凸优化问题,梯度的吕少高是相应的作者;作者对本文的贡献相同,他们的名字按字母顺序排列。中国统计:新录用论文(接受作者版本,需英文编辑)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistica Sinica
Statistica Sinica 数学-统计学与概率论
CiteScore
2.10
自引率
0.00%
发文量
82
审稿时长
10.5 months
期刊介绍: Statistica Sinica aims to meet the needs of statisticians in a rapidly changing world. It provides a forum for the publication of innovative work of high quality in all areas of statistics, including theory, methodology and applications. The journal encourages the development and principled use of statistical methodology that is relevant for society, science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信