A Langevinized Ensemble Kalman Filter for Large-Scale Dynamic Learning

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Peiyi Zhang, Qifan Song, F. Liang
{"title":"A Langevinized Ensemble Kalman Filter for Large-Scale Dynamic Learning","authors":"Peiyi Zhang, Qifan Song, F. Liang","doi":"10.5705/ss.202022.0172","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5705/ss.202022.0172","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
用于大规模动态学习的Langevinized集成卡尔曼滤波器
集合卡尔曼滤波(EnKF)在大气科学和海洋科学的数据同化方面表现良好。然而,它不能收敛到正确的滤波分布,这使得它不能用于动态系统的不确定性量化。因此,我们在朗格万动力学的框架下重新表述了EnKF,得到了一种新的粒子滤波算法,我们称之为朗格万化EnKF (LEnKF)。LEnKF继承了EnKF的预测分析过程,并使用了随机梯度朗格万动力学(SGLD)的小批量数据。我们证明LEnKF与EnKF一样是一个顺序预处理的SGLD采样器,但它的执行速度被预测分析过程加快了。此外,随着每i阶段迭代次数的增加,LEnKF在2-Wasserstein距离方面收敛到正确的滤波分布。我们使用各种示例来演示LEnKF的性能。LEnKF不仅在状态维数和样本量方面具有可扩展性,而且对于长序列动态数据也倾向于不受样本退化的影响。中国统计:预印本doi:10.5705/ss.202022.0172
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信