Test for Zero Mean of Errors In An ARMA-GGARCH Model After Using A Median Inference

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yaolan Ma, Mo Zhou, Liang Peng, Rongmao Zhang
{"title":"Test for Zero Mean of Errors In An ARMA-GGARCH Model After Using A Median Inference","authors":"Yaolan Ma, Mo Zhou, Liang Peng, Rongmao Zhang","doi":"10.5705/ss.202022.0013","DOIUrl":null,"url":null,"abstract":"Test for Zero Mean of Errors In An ARMA-GGARCH Model After Using A Median Inference Abstract: The stylized fact of heavy tails makes median inferences appealing in fitting an ARMA model with heteroscedastic errors to financial returns. To ensure that the model still concerns the conditional mean, we test for a zero mean of the errors using a random weighted bootstrap method for quantifying estimation uncertainty. The proposed test is robust against heteroscedasticity and heavy tails as we do not infer the heteroscedasticity and need fewer finite moments. Simulations confirm the good finite sample performance in terms of size and power. Empirical applications caution the model interpretation after using a median inference.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5705/ss.202022.0013","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Test for Zero Mean of Errors In An ARMA-GGARCH Model After Using A Median Inference Abstract: The stylized fact of heavy tails makes median inferences appealing in fitting an ARMA model with heteroscedastic errors to financial returns. To ensure that the model still concerns the conditional mean, we test for a zero mean of the errors using a random weighted bootstrap method for quantifying estimation uncertainty. The proposed test is robust against heteroscedasticity and heavy tails as we do not infer the heteroscedasticity and need fewer finite moments. Simulations confirm the good finite sample performance in terms of size and power. Empirical applications caution the model interpretation after using a median inference.
使用中值推理的ARMA-GGARCH模型的零误差均值检验
中位数推理适用于将具有异方差误差的ARMA模型拟合到财务回报中,因为已知此类回报具有重尾。为了确保模型仍然与条件均值相关,我们使用随机加权自举方法来量化估计不确定性,以检验误差的均值是否为零。所提出的检验对异方差和重尾具有鲁棒性,因为我们不推断异方差,并且需要较少的有限矩。仿真验证了所提出的测试在尺寸和功率方面具有良好的有限样本性能。经验应用表明,我们在使用中位数推理后解释模型时需要谨慎。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信