{"title":"Asymptotic Behavior of the Maximum Likelihood Estimator for General Markov Switching Models","authors":"C. Fuh, T. Pang","doi":"10.5705/ss.202021.0336","DOIUrl":null,"url":null,"abstract":": Motivated by studying the asymptotic properties of the parameter estimator in switching linear state space models, switching GARCH models, switching stochastic volatility models, and recurrent neural networks, we investigate the maximum likelihood estimator for general Markov switching models. To this end, we first propose an innovative matrix-valued Markovian iterated function system (MIFS) representation for the likelihood function. Then, we express the derivatives of the MIFS as a composition of random matrices. To the best of our knowledge, this is a new method in the literature. Using this useful device, we establish the strong consistency and asymptotic normality of the maximum likelihood estimator under some regularity conditions. Furthermore, we characterize the Fisher information as the inverse of the asymptotic variance.","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"23 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Sinica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5705/ss.202021.0336","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1
Abstract
: Motivated by studying the asymptotic properties of the parameter estimator in switching linear state space models, switching GARCH models, switching stochastic volatility models, and recurrent neural networks, we investigate the maximum likelihood estimator for general Markov switching models. To this end, we first propose an innovative matrix-valued Markovian iterated function system (MIFS) representation for the likelihood function. Then, we express the derivatives of the MIFS as a composition of random matrices. To the best of our knowledge, this is a new method in the literature. Using this useful device, we establish the strong consistency and asymptotic normality of the maximum likelihood estimator under some regularity conditions. Furthermore, we characterize the Fisher information as the inverse of the asymptotic variance.
期刊介绍:
Statistica Sinica aims to meet the needs of statisticians in a rapidly changing world. It provides a forum for the publication of innovative work of high quality in all areas of statistics, including theory, methodology and applications. The journal encourages the development and principled use of statistical methodology that is relevant for society, science and technology.