Parsimonious Tensor Discriminant Analysis

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ning Wang, Wenjing Wang, Xin Zhang
{"title":"Parsimonious Tensor Discriminant Analysis","authors":"Ning Wang, Wenjing Wang, Xin Zhang","doi":"10.5705/ss.202020.0496","DOIUrl":null,"url":null,"abstract":": Discriminant analyses of multidimensional array data (i.e., tensors) are of substantial interest in numerous statistics and engineering research problems, such as signal processing, imaging, genetics, and brain–computer interfaces. In this study, we consider a multi-class discriminant analysis with a tensor-variate predictor and a categorical response. To overcome the high dimensionality and to exploit the tensor correlation structure, we propose the discriminant analysis with tensor envelope (DATE) model for simultaneous dimension reduction and classification. We extend the notion of tensor envelopes from regression to discriminant analysis and develop two complementary estimation procedures: DATE-L is a likelihood-based estimator that is shown to be asymptotically efficient when the sample size goes to infinity and the tensor dimension is fixed; DATE-D is a novel decomposition-based estimator suitable for high-dimensional problems. Interestingly, we show that DATE-D is still root-n consistent, even when the tensor dimensions on each model grow arbitrarily fast, but at a similar rate. We demonstrate the robustness and effi-ciency of our estimators using extensive simulations and real-data examples.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5705/ss.202020.0496","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

: Discriminant analyses of multidimensional array data (i.e., tensors) are of substantial interest in numerous statistics and engineering research problems, such as signal processing, imaging, genetics, and brain–computer interfaces. In this study, we consider a multi-class discriminant analysis with a tensor-variate predictor and a categorical response. To overcome the high dimensionality and to exploit the tensor correlation structure, we propose the discriminant analysis with tensor envelope (DATE) model for simultaneous dimension reduction and classification. We extend the notion of tensor envelopes from regression to discriminant analysis and develop two complementary estimation procedures: DATE-L is a likelihood-based estimator that is shown to be asymptotically efficient when the sample size goes to infinity and the tensor dimension is fixed; DATE-D is a novel decomposition-based estimator suitable for high-dimensional problems. Interestingly, we show that DATE-D is still root-n consistent, even when the tensor dimensions on each model grow arbitrarily fast, but at a similar rate. We demonstrate the robustness and effi-ciency of our estimators using extensive simulations and real-data examples.
简约张量判别分析
多维阵列数据(即张量)的判别分析在许多统计学和工程研究问题中具有重要意义,例如信号处理、成像、遗传学和脑机接口。在这项研究中,我们考虑了一个具有张量变量预测器和分类响应的多类判别分析。为了克服数据的高维性和利用张量关联结构,我们提出了基于张量包络(DATE)模型的判别分析方法,用于同时进行降维和分类。我们将张量包膜的概念从回归扩展到判别分析,并开发了两个互补的估计过程:DATE-L是一个基于似然的估计器,当样本量趋于无穷大且张量维固定时,它是渐近有效的;DATE-D是一种适用于高维问题的新的基于分解的估计器。有趣的是,我们证明DATE-D仍然是根n一致的,即使每个模型上的张量维以任意快的速度增长,但速度相似。我们通过大量的模拟和实际数据示例证明了我们的估计器的鲁棒性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信