Unbiased Boosting Estimation for Censored Survival Data

IF 1.5 3区 数学 Q2 STATISTICS & PROBABILITY
Li‐Pang Chen, G. Yi
{"title":"Unbiased Boosting Estimation for Censored Survival Data","authors":"Li‐Pang Chen, G. Yi","doi":"10.5705/ss.202021.0050","DOIUrl":null,"url":null,"abstract":": Boosting methods have been broadly discussed for various settings, and most methods handle data with complete observations. Although some methods are available for survival data with censored responses, they tend to assume a specific model for the survival process, and most provide numerical implementation procedures without rigorous theoretical justifications. In this paper, we develop an unbiased boosting estimation method for censored survival data, without assuming an explicit model, and explore three strategies for adjusting the loss functions, while accommodating censoring effects. We implement the proposed method using a functional gradient descent algorithm, and rigorously establish our theoretical results, including the consistency and optimization convergence. Our numerical studies show that the proposed method exhibits satisfactory performance in finite-sample settings.","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Sinica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5705/ss.202021.0050","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

: Boosting methods have been broadly discussed for various settings, and most methods handle data with complete observations. Although some methods are available for survival data with censored responses, they tend to assume a specific model for the survival process, and most provide numerical implementation procedures without rigorous theoretical justifications. In this paper, we develop an unbiased boosting estimation method for censored survival data, without assuming an explicit model, and explore three strategies for adjusting the loss functions, while accommodating censoring effects. We implement the proposed method using a functional gradient descent algorithm, and rigorously establish our theoretical results, including the consistency and optimization convergence. Our numerical studies show that the proposed method exhibits satisfactory performance in finite-sample settings.
删节生存数据的无偏增强估计
对于各种设置的增强方法已经进行了广泛的讨论,并且大多数方法处理具有完整观测值的数据。虽然有些方法可用于带有删减响应的生存数据,但它们倾向于假设生存过程的特定模型,并且大多数方法提供的数值实现程序没有严格的理论依据。在本文中,我们开发了一种无偏的增强估计方法,不假设一个显式模型,并探讨了三种策略来调整损失函数,同时适应审查的影响。我们使用泛函梯度下降算法实现了所提出的方法,并严格验证了我们的理论结果,包括一致性和优化收敛性。数值研究表明,该方法在有限样本条件下具有令人满意的性能。Grace Yi是通讯作者。电子邮件:gyi5@uwo.ca中国统计:预印本doi:10.5705/ss.202021.0050
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistica Sinica
Statistica Sinica 数学-统计学与概率论
CiteScore
2.10
自引率
0.00%
发文量
82
审稿时长
10.5 months
期刊介绍: Statistica Sinica aims to meet the needs of statisticians in a rapidly changing world. It provides a forum for the publication of innovative work of high quality in all areas of statistics, including theory, methodology and applications. The journal encourages the development and principled use of statistical methodology that is relevant for society, science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信