Results on Hefty V4-Vertex Magic Graph Labeling

Q3 Pharmacology, Toxicology and Pharmaceutics
S. Kavitha, V. L. Stella, Arputha Mary
{"title":"Results on Hefty V4-Vertex Magic Graph Labeling","authors":"S. Kavitha, V. L. Stella, Arputha Mary","doi":"10.47750/pnr.2023.14.s01.121","DOIUrl":null,"url":null,"abstract":"Let V4 be an abelian group under multiplication. Let g : E(G) →V4 −{1}. The vertex magic labeling on V4 is defined as the vertex labeling g∗ : V (G) →V4 such that ), where the product is taken over all edges uv of G incident at v is a constant. If the constant is 1, it becomes a Hefty V4-vertex magic labeling. A graph is said to be Hefty V4-magic graph if it admits a Hefty V4-vertex magic labeling. In this paper we investigate the Hefty V4-vertex magic labeling behaviour of graphs like Bipartite, Complete graph, Cayley graph etc.","PeriodicalId":16728,"journal":{"name":"Journal of Pharmaceutical Negative Results","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmaceutical Negative Results","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47750/pnr.2023.14.s01.121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

Let V4 be an abelian group under multiplication. Let g : E(G) →V4 −{1}. The vertex magic labeling on V4 is defined as the vertex labeling g∗ : V (G) →V4 such that ), where the product is taken over all edges uv of G incident at v is a constant. If the constant is 1, it becomes a Hefty V4-vertex magic labeling. A graph is said to be Hefty V4-magic graph if it admits a Hefty V4-vertex magic labeling. In this paper we investigate the Hefty V4-vertex magic labeling behaviour of graphs like Bipartite, Complete graph, Cayley graph etc.
重量级v4顶点幻图标注的结果
设V4是一个乘法作用下的阿贝尔群。设g: E(g)→V4−{1}。V4上的顶点魔幻标记被定义为顶点标记g *: V (g)→V4,使得),其中在所有边上的积取在V处发生的g的uv为常数。如果常数是1,它就变成了一个巨大的v4顶点标记。如果一个图承认一个巨大的v4顶点魔术标记,我们就说它是一个巨大的v4魔术图。本文研究了二部图、完全图、Cayley图等图的巨大v4顶点魔幻标记行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信