Investigation of Mango (Mangnifera Indica) Extract as Zinc Corrosion Inhibitor in a Sodium Hydroxide Medium

IF 1.1 Q4 ELECTROCHEMISTRY
M. Omotioma, O. Onukwuli, C. O. Nevo
{"title":"Investigation of Mango (Mangnifera Indica) Extract as Zinc Corrosion Inhibitor in a Sodium Hydroxide Medium","authors":"M. Omotioma, O. Onukwuli, C. O. Nevo","doi":"10.4152/pea.2023410501","DOIUrl":null,"url":null,"abstract":"This work examined MLE as Zn corrosion inhibitor in a NaOH medium. MLE was subjected to qualitative and quantitative Pc analyses. Thermometric and gravimetric techniques were employed in the corrosion inhibition study. In the thermometric method, reaction numbers for Zn dissolution in blank and inhibited NaOH media were used to determine MLE IE(%). The gravimetric method was carried out using one factor at a time and RSM. CCD of DES was employed in RSM. The analyses of the experimental results revealed that MLE was predominantly made up of flavonoids, alkaloids and tannins (471.7, 458.3 and 115.0 mg/100 g, respectively). Zn  by the extract increased with higher inhibitor C, but decreased with a rise in T. A quadratic model adequately described the relationship between IE(%), C, T and time factors. High IE(%) of 83.75% was obtained at an inhibitor C of 1.0 g/L, T of 303 K and IT of 5 h. Hence, MLE is a suitable inhibitor for Zn corrosion in a NaOH medium.","PeriodicalId":20334,"journal":{"name":"Portugaliae Electrochimica Acta","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Portugaliae Electrochimica Acta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4152/pea.2023410501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 1

Abstract

This work examined MLE as Zn corrosion inhibitor in a NaOH medium. MLE was subjected to qualitative and quantitative Pc analyses. Thermometric and gravimetric techniques were employed in the corrosion inhibition study. In the thermometric method, reaction numbers for Zn dissolution in blank and inhibited NaOH media were used to determine MLE IE(%). The gravimetric method was carried out using one factor at a time and RSM. CCD of DES was employed in RSM. The analyses of the experimental results revealed that MLE was predominantly made up of flavonoids, alkaloids and tannins (471.7, 458.3 and 115.0 mg/100 g, respectively). Zn  by the extract increased with higher inhibitor C, but decreased with a rise in T. A quadratic model adequately described the relationship between IE(%), C, T and time factors. High IE(%) of 83.75% was obtained at an inhibitor C of 1.0 g/L, T of 303 K and IT of 5 h. Hence, MLE is a suitable inhibitor for Zn corrosion in a NaOH medium.
芒果(Mangnifera Indica)提取物在氢氧化钠介质中的锌缓蚀剂研究
本研究考察了MLE在NaOH介质中作为Zn缓蚀剂的作用。MLE进行定性和定量Pc分析。在缓蚀研究中采用了测温和重量技术。在测温法中,用锌在空白和抑制NaOH介质中溶解的反应数来测定MLE IE(%)。重量法采用单因素法和RSM法。在RSM中采用DES的CCD。实验结果表明,MLE主要由黄酮类化合物、生物碱和单宁组成(分别为471.7、458.3和115.0 mg/100 g)。抑制因子C越高,提取物的Zn -比值越高,抑制因子T越高,提取物的Zn -比值越低。二次元模型充分描述了IE(%)、C、T与时间因素的关系。当缓蚀剂浓度为1.0 g/L,温度为303 K,保温时间为5 h时,其IE(%)高达83.75%,表明MLE是一种适合于NaOH介质中Zn腐蚀的缓蚀剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
16.70%
发文量
17
期刊介绍: Portugaliae Electrochimica Acta is a bi-monthly Journal published by the Portuguese Electrochemical Society since 1983. Portugaliae Electrochimica Acta publishes original papers, brief communications, reviews and letters concerned with every aspect of theory and practice of electrochemistry, as well as articles in which topics on history, science policy, education, etc. in the electrochemical field (teaching or research) may be discussed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信