{"title":"Atrazine Voltammetric Determination in the Pesticide Industries Wastewater by Gold Nanoparticles at a Modified Glassy Carbon Electrode","authors":"S. Memon, M. Waris, A. R. Sidhu, M. Zaqa","doi":"10.4152/pea.2022400504","DOIUrl":null,"url":null,"abstract":"In this study, gold nanoparticles (AuNPs) were synthesized using sodium borohydride (NaBH 4 ) as reductant. AuNPs size and shape were experimented by using various characterization techniques. The synthesized AuNPs performance capability for atrazine (ATR) detection, at a glassy carbon electrode (GCE), was verified using cyclic voltammetry (CV) as the determining mode. AuNPs impressive electrochemical performance and stability at the GCE led to further studies, without the need to apply nafion. ATR linear concentration plot ranged from 10 to 17 nM, with a lower limit of detection (LOD) of 0.17 nM, and a regression coefficient (R 2 ) of 0.9934, under optimized conditions. The proposed sensor was very reliable, with a relative standard deviation (RSD) of 1.1%, for n = 20, and it was quite sensitive for ATR, with no discernible interference from other ions. Consequently, AuNPs were effectively used to identify ATR in several pesticide industry wastewater samples.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4152/pea.2022400504","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
In this study, gold nanoparticles (AuNPs) were synthesized using sodium borohydride (NaBH 4 ) as reductant. AuNPs size and shape were experimented by using various characterization techniques. The synthesized AuNPs performance capability for atrazine (ATR) detection, at a glassy carbon electrode (GCE), was verified using cyclic voltammetry (CV) as the determining mode. AuNPs impressive electrochemical performance and stability at the GCE led to further studies, without the need to apply nafion. ATR linear concentration plot ranged from 10 to 17 nM, with a lower limit of detection (LOD) of 0.17 nM, and a regression coefficient (R 2 ) of 0.9934, under optimized conditions. The proposed sensor was very reliable, with a relative standard deviation (RSD) of 1.1%, for n = 20, and it was quite sensitive for ATR, with no discernible interference from other ions. Consequently, AuNPs were effectively used to identify ATR in several pesticide industry wastewater samples.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.