{"title":"Electrochemical Degradation of Ethyleneamines Contained in Galvanic Baths on a BDD Electrode","authors":"M. Socha, J. Rynkowski","doi":"10.4152/pea.2022400303","DOIUrl":null,"url":null,"abstract":"Ethylenediamine (EDA), diethylenetriamine (DETA) and N,N,N',N'-tetrakis (2-hydroxypropyl) ethylenediamine (THPrED) are used relatively often in galvanic processes. Tetra-substituted derivatives, such as N, N, N ', N'-tetrakis (2-hydroxyethyl) ethylenediamine, (THEtED) are quite biologically stable and hardly degradable. In recent years, much attention has been devoted to electrochemical oxidation, using anodes with a high over-potential of O2 evolution, such as the boron-doped diamond (BDD). DETA and THPrED electrochemical treatment using a BDD anode was herein studied. The degradation efficiency of the amines was evaluated under different current intensities and reaction times. To determine the products formed in the oxidation process, ion chromatography (IC) was used. A high decrease in the current between the first and the second CV scan indicated the polymer film formation on the BDD electrode surface. Hydroxyl radicals formed at a potential of about 2 V and higher caused further oxidation of the electrode reaction products. It was found that NH4, CH3-COOH, N2, EDA, CO2 and NO3were formed in a short reaction time, and at low current intensity. The mineralization occurred during substrates electrolysis, due to rapid DETA and THPrED decomposition. After 180 min of reaction, αTOC and αN values for DETA were 94% and 18%, respectively. For THPrED, αTOC was 98.6% and αN was 43.6%. Therefore, the electrochemical approach was considered a very promising method in practical application for the treatment of wastewater containing amines.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4152/pea.2022400303","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ethylenediamine (EDA), diethylenetriamine (DETA) and N,N,N',N'-tetrakis (2-hydroxypropyl) ethylenediamine (THPrED) are used relatively often in galvanic processes. Tetra-substituted derivatives, such as N, N, N ', N'-tetrakis (2-hydroxyethyl) ethylenediamine, (THEtED) are quite biologically stable and hardly degradable. In recent years, much attention has been devoted to electrochemical oxidation, using anodes with a high over-potential of O2 evolution, such as the boron-doped diamond (BDD). DETA and THPrED electrochemical treatment using a BDD anode was herein studied. The degradation efficiency of the amines was evaluated under different current intensities and reaction times. To determine the products formed in the oxidation process, ion chromatography (IC) was used. A high decrease in the current between the first and the second CV scan indicated the polymer film formation on the BDD electrode surface. Hydroxyl radicals formed at a potential of about 2 V and higher caused further oxidation of the electrode reaction products. It was found that NH4, CH3-COOH, N2, EDA, CO2 and NO3were formed in a short reaction time, and at low current intensity. The mineralization occurred during substrates electrolysis, due to rapid DETA and THPrED decomposition. After 180 min of reaction, αTOC and αN values for DETA were 94% and 18%, respectively. For THPrED, αTOC was 98.6% and αN was 43.6%. Therefore, the electrochemical approach was considered a very promising method in practical application for the treatment of wastewater containing amines.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.