{"title":"Low Cost Electrochemical Sensor for Simultaneous Detection and Estimation of Dihydroxybenzene Isomers","authors":"N. T. Tonu, M. A. Yousuf","doi":"10.4152/pea.2022400105","DOIUrl":null,"url":null,"abstract":"An ionic liquid (IL) based pencil graphite electrode (PGE) sensor was electrochemically fabricated for hydroquinone (HQ), catechol (CC) and resorcinol (RS) simultaneous detection and estimation in aqueous media. PGE surface was modified by 1-hexylpyridinium hexafluorophosphate (HPHP) using cyclic voltammetry (CV). The modified surface was characterized by scanning electron microscope (SEM) and energy dispersive X-ray microanalysis (EDX). The modified electrode showed an excellent electro-analytical activity towards simultaneously HQ, CC and RS, at pH 6.8 in aqueous media. The scan rate effect was diffusion controlled and the concentration effect was linear with current. The limit of detection (LOD) for HQ, CC and RS was found to be 6.38 μmol L¹, 4.56 μmol L¹ and 19.6 μmol L¹, respectively. The sensitivity for HQ, CC and RS was found to be 448.49 μAmM -1 cm -2 , 627.35 μAmM -1 cm -2 and 146.10 μAmM −1 cm −2 , respectively, in a ternary mixture of dihydroxybenzene isomers (DHBIs). The cost of using PGE was lower than that of the conventional electrodes. isomers, ionic liquid, pencil graphite electrode and differential pulse voltammetry.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4152/pea.2022400105","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
An ionic liquid (IL) based pencil graphite electrode (PGE) sensor was electrochemically fabricated for hydroquinone (HQ), catechol (CC) and resorcinol (RS) simultaneous detection and estimation in aqueous media. PGE surface was modified by 1-hexylpyridinium hexafluorophosphate (HPHP) using cyclic voltammetry (CV). The modified surface was characterized by scanning electron microscope (SEM) and energy dispersive X-ray microanalysis (EDX). The modified electrode showed an excellent electro-analytical activity towards simultaneously HQ, CC and RS, at pH 6.8 in aqueous media. The scan rate effect was diffusion controlled and the concentration effect was linear with current. The limit of detection (LOD) for HQ, CC and RS was found to be 6.38 μmol L¹, 4.56 μmol L¹ and 19.6 μmol L¹, respectively. The sensitivity for HQ, CC and RS was found to be 448.49 μAmM -1 cm -2 , 627.35 μAmM -1 cm -2 and 146.10 μAmM −1 cm −2 , respectively, in a ternary mixture of dihydroxybenzene isomers (DHBIs). The cost of using PGE was lower than that of the conventional electrodes. isomers, ionic liquid, pencil graphite electrode and differential pulse voltammetry.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.