Electrochemical and Metallurgical Behavior of Lead-Magnesium Casting Alloys as Grids for Lead-Acid Batteries

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
S. Khatbi, Y. Gouale, A. Lamiri, M. Essahli
{"title":"Electrochemical and Metallurgical Behavior of Lead-Magnesium Casting Alloys as Grids for Lead-Acid Batteries","authors":"S. Khatbi, Y. Gouale, A. Lamiri, M. Essahli","doi":"10.4152/pea.2021390403","DOIUrl":null,"url":null,"abstract":"In order to evaluate the influence of magnesium on the corrosion resistance of lead anodes in H2SO4 4 M, as well as on the microcrystalline morphology of lead, different electrochemical and metallurgical studies were made, such potentiodynamique polarization, electrochemical impedance spectroscopy, microhardness evolution, X-ray fluorescence spectroscopy and optical microscopy. The obtained results have shown that the addition of magnesium up to 1.5% in weight leads to a significant decrease in the corrosion current density (Icorr) and therefore, it increases the corrosion inhibition efficiency to 83% and it reduces the famous sulfation phenomena, by facilitating the transformation of PbSO4 and PbO to PbO2. It also makes the micro-structure of Pb much stronger, which makes the Pb anodes more resistant to mechanical shocks within the battery. We have also studied the effect of temperature on the corrosion of the new casting alloys. We found that an increase in temperature led to a decrease in its effect on the corrosion of alloys, compared with that of pure lead. Therefore, the new improved battery is more resistant, durable and more environment friendly.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4152/pea.2021390403","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In order to evaluate the influence of magnesium on the corrosion resistance of lead anodes in H2SO4 4 M, as well as on the microcrystalline morphology of lead, different electrochemical and metallurgical studies were made, such potentiodynamique polarization, electrochemical impedance spectroscopy, microhardness evolution, X-ray fluorescence spectroscopy and optical microscopy. The obtained results have shown that the addition of magnesium up to 1.5% in weight leads to a significant decrease in the corrosion current density (Icorr) and therefore, it increases the corrosion inhibition efficiency to 83% and it reduces the famous sulfation phenomena, by facilitating the transformation of PbSO4 and PbO to PbO2. It also makes the micro-structure of Pb much stronger, which makes the Pb anodes more resistant to mechanical shocks within the battery. We have also studied the effect of temperature on the corrosion of the new casting alloys. We found that an increase in temperature led to a decrease in its effect on the corrosion of alloys, compared with that of pure lead. Therefore, the new improved battery is more resistant, durable and more environment friendly.
铅酸电池栅极用铅镁合金的电化学和冶金性能
为了评价镁对铅阳极在H2SO4 - 4m中耐蚀性的影响,以及对铅微晶形貌的影响,进行了不同的电化学和冶金研究,如电位动力学极化、电化学阻抗谱、显微硬度演变、x射线荧光光谱和光学显微镜。结果表明,当镁的加入量达到1.5%时,腐蚀电流密度(Icorr)显著降低,缓蚀效率提高到83%,并通过促进PbSO4和PbO向PbO2的转化,减少了著名的磺化现象。它还使铅的微观结构更加坚固,从而使铅阳极更能抵抗电池内的机械冲击。我们还研究了温度对新型铸造合金腐蚀的影响。我们发现,与纯铅相比,温度升高导致其对合金腐蚀的影响减小。因此,新改进的电池更耐腐蚀,更耐用,更环保。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信