Expansion of harmonic functions near the boundary of Dini domains

IF 1.3 2区 数学 Q1 MATHEMATICS
C. Kenig, Zihui Zhao
{"title":"Expansion of harmonic functions near the boundary of Dini domains","authors":"C. Kenig, Zihui Zhao","doi":"10.4171/rmi/1380","DOIUrl":null,"url":null,"abstract":"Let u be a harmonic function in a C-Dini domain, such that u vanishes on an open set of the boundary. We show that near every point in the open set, u can be written uniquely as the sum of a non-trivial homogeneous harmonic polynomial and an error term of higher degree (depending on the Dini parameter). In particular, this implies that u has a unique tangent function at every such point, and that the convergence rate to the tangent function can be estimated. We also study the relationship of tangent functions at nearby points in a special case.","PeriodicalId":49604,"journal":{"name":"Revista Matematica Iberoamericana","volume":"1 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Matematica Iberoamericana","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/rmi/1380","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Let u be a harmonic function in a C-Dini domain, such that u vanishes on an open set of the boundary. We show that near every point in the open set, u can be written uniquely as the sum of a non-trivial homogeneous harmonic polynomial and an error term of higher degree (depending on the Dini parameter). In particular, this implies that u has a unique tangent function at every such point, and that the convergence rate to the tangent function can be estimated. We also study the relationship of tangent functions at nearby points in a special case.
Dini域边界附近调和函数的展开
设u是C-Dini域中的调和函数,使得u在边界的开集上消失。我们证明了在开集中的每一点附近,u可以唯一地写成一个非平凡齐次调和多项式和一个更高次误差项(取决于Dini参数)的和。特别地,这意味着u在每一个这样的点上都有一个唯一的正切函数,并且可以估计正切函数的收敛速率。我们还研究了一种特殊情况下的切线函数在邻近点的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
61
审稿时长
>12 weeks
期刊介绍: Revista Matemática Iberoamericana publishes original research articles on all areas of mathematics. Its distinguished Editorial Board selects papers according to the highest standards. Founded in 1985, Revista is a scientific journal of Real Sociedad Matemática Española.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信