{"title":"Suprafibrillar structures of collagen, evidence for local organization and auxetic behaviour in architectures","authors":"K. Patten, T. Wess","doi":"10.4236/JBPC.2013.43014","DOIUrl":null,"url":null,"abstract":"The suprafibrillar organisation of collagen rich tissues is the keystone to the diversity of resultant structures made from relatively similar materials. The local organisation between fibrils may be essential to suprafibril structures that are critical to functionality such as transparency in cornea, where specific lateral relationships between fibrils dictate optical properties. Here we show that corneal X-ray diffraction combined with mechanical strains to disrupt a specific suprafibrillar relationship between fibrils evidence and a coherent staggered axial relationship between collagen fibrils. The data also shows evidence for auxetic behavior of the collagen fibrils and reveals a 120 nm diffraction feature previously unreported in collagen tissues. The results show that suprafibrillar organisation can be an essential component in tissue architecture that has hitherto been ignored, but now must be considered in mechanical and structural models.","PeriodicalId":62927,"journal":{"name":"生物物理化学(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物物理化学(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/JBPC.2013.43014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
The suprafibrillar organisation of collagen rich tissues is the keystone to the diversity of resultant structures made from relatively similar materials. The local organisation between fibrils may be essential to suprafibril structures that are critical to functionality such as transparency in cornea, where specific lateral relationships between fibrils dictate optical properties. Here we show that corneal X-ray diffraction combined with mechanical strains to disrupt a specific suprafibrillar relationship between fibrils evidence and a coherent staggered axial relationship between collagen fibrils. The data also shows evidence for auxetic behavior of the collagen fibrils and reveals a 120 nm diffraction feature previously unreported in collagen tissues. The results show that suprafibrillar organisation can be an essential component in tissue architecture that has hitherto been ignored, but now must be considered in mechanical and structural models.