Distributed Target Location in Wireless Sensors Network: An Approach Using FPGA and Artificial Neural Network

Mauro Rodrigo Larrat Frota e Silva, Glaucio H. S. Carvalho, D. Monteiro, L. Machado
{"title":"Distributed Target Location in Wireless Sensors Network: An Approach Using FPGA and Artificial Neural Network","authors":"Mauro Rodrigo Larrat Frota e Silva, Glaucio H. S. Carvalho, D. Monteiro, L. Machado","doi":"10.4236/WSN.2015.75005","DOIUrl":null,"url":null,"abstract":"This paper analyzes the implementation of an algorithm into a FPGA embedded and distributed target location method using the Received Signal Strength Indicator (RSSI). The objective is to show a method in which an embedded feedforward Artificial Neural Network (ANN) can estimate target location in a distributed fashion against anchor failure. We discuss the lack of FPGA implementation of equivalent methods and the benefits of using a robust platform. We introduce the description of the implementation and we explain the operation of the proposed method, followed by the calculated errors due to inherent Elliott function approximation and the discretization of decimal values used as free parameters in ANN. Furthermore, we show some target location estimation points in function of different numbers of anchor failures. Our contribution is to show that an FPGA embedded ANN implementation, with a few layers, can rapidly estimate target location in a distributed fashion and in presence of failures of anchor nodes considering accuracy, precision and execution time.","PeriodicalId":58712,"journal":{"name":"无线传感网络(英文)","volume":"07 1","pages":"35-42"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"无线传感网络(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/WSN.2015.75005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper analyzes the implementation of an algorithm into a FPGA embedded and distributed target location method using the Received Signal Strength Indicator (RSSI). The objective is to show a method in which an embedded feedforward Artificial Neural Network (ANN) can estimate target location in a distributed fashion against anchor failure. We discuss the lack of FPGA implementation of equivalent methods and the benefits of using a robust platform. We introduce the description of the implementation and we explain the operation of the proposed method, followed by the calculated errors due to inherent Elliott function approximation and the discretization of decimal values used as free parameters in ANN. Furthermore, we show some target location estimation points in function of different numbers of anchor failures. Our contribution is to show that an FPGA embedded ANN implementation, with a few layers, can rapidly estimate target location in a distributed fashion and in presence of failures of anchor nodes considering accuracy, precision and execution time.
基于FPGA和人工神经网络的无线传感器网络分布式目标定位方法
本文分析了一种基于接收信号强度指示器(RSSI)的嵌入式分布式目标定位算法在FPGA中的实现。目的是展示一种方法,其中嵌入前馈人工神经网络(ANN)可以估计目标位置,以一种分布式的方式防止锚破坏。我们讨论了FPGA实现等效方法的不足以及使用健壮平台的好处。我们介绍了实现的描述,并解释了所提出的方法的操作,其次是由于固有的艾略特函数近似和在人工神经网络中用作自由参数的十进制值的离散化而导致的计算误差。在此基础上,给出了不同锚杆失效次数下的目标位置估计点。我们的贡献是表明FPGA嵌入式人工神经网络实现,具有几层,可以在考虑准确性,精度和执行时间的锚节点故障的情况下以分布式方式快速估计目标位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
279
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信