Ken-ichi Tanaka, T. Nanba, Tomoyuki Furubayashi, Y. Noda, L. Willmore, A. Mori
{"title":"Molecular basis of scavenging effect of zonisamide on hydroxyl radical in vitro","authors":"Ken-ichi Tanaka, T. Nanba, Tomoyuki Furubayashi, Y. Noda, L. Willmore, A. Mori","doi":"10.4236/JBPC.2012.33030","DOIUrl":null,"url":null,"abstract":"Zonisamide (ZNS), a commonly used anticonvulsant, scavenged hydroxyl radicals at a clinically relevant concentration. Reactants of ZNS with hydrogen peroxide and with hydrogen peroxide plus UV irradiation, yielding hydroxyl radicals, were analyzed by the LC/MS technique. Many small fragments were found in the both reactions, suggesting that ZNS was decomposed not only by hydroxyl radicals but also by hydrogen peroxide. Furthermore, mass-fragment-grams showed that m/z: 213 (ZNS itself) was decreased markedly and m/z: 118 (may be a decomposed product by ring cleavage of ZNS) was detected specifically by treatment with hydroxyl radical. These data suggested that ZNS may react directly with free radicals.","PeriodicalId":62927,"journal":{"name":"生物物理化学(英文)","volume":"2012 1","pages":"256-258"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物物理化学(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/JBPC.2012.33030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Zonisamide (ZNS), a commonly used anticonvulsant, scavenged hydroxyl radicals at a clinically relevant concentration. Reactants of ZNS with hydrogen peroxide and with hydrogen peroxide plus UV irradiation, yielding hydroxyl radicals, were analyzed by the LC/MS technique. Many small fragments were found in the both reactions, suggesting that ZNS was decomposed not only by hydroxyl radicals but also by hydrogen peroxide. Furthermore, mass-fragment-grams showed that m/z: 213 (ZNS itself) was decreased markedly and m/z: 118 (may be a decomposed product by ring cleavage of ZNS) was detected specifically by treatment with hydroxyl radical. These data suggested that ZNS may react directly with free radicals.