Sunlet decomposition of tensor product graphs

Q4 Mathematics
A. Akwu
{"title":"Sunlet decomposition of tensor product graphs","authors":"A. Akwu","doi":"10.47743/anstim.2022.00019","DOIUrl":null,"url":null,"abstract":"For any integer r ≥ 3, the sunlet graph of order 2 r is a graph consisting of a cycle of length r with each vertex of the cycle adjacent to a pendant vertex. In this present article, we shall obtain the necessary and sufficient conditions for decomposing the tensor product of complete graphs and complete graph minus a 1-factor with complete graph K m (that is, K n × K m and K n − I × K m respectively) into sunlet graphs.","PeriodicalId":55523,"journal":{"name":"Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi - Matematica","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi - Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47743/anstim.2022.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

For any integer r ≥ 3, the sunlet graph of order 2 r is a graph consisting of a cycle of length r with each vertex of the cycle adjacent to a pendant vertex. In this present article, we shall obtain the necessary and sufficient conditions for decomposing the tensor product of complete graphs and complete graph minus a 1-factor with complete graph K m (that is, K n × K m and K n − I × K m respectively) into sunlet graphs.
张量积图的Sunlet分解
对于任意整数r≥3,2r阶的太阳图是由一个长度为r的循环组成的图,该循环的每个顶点与一个垂顶点相邻。在本文中,我们将得到完全图与完全图K m(分别是K n × K m和K n−I × K m)的张量积分解成太阳图的充分必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
2
审稿时长
>12 weeks
期刊介绍: This journal is devoted to the publication of original papers of moderate length addressed to a broad mathematical audience. It publishes results of original research and research-expository papers in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信