Analysis of Material Loss Behavior According to Long-Term Experiments on LDIE-FAC Multiple Degradation of Carbon Steel Materials

K. Hwang, Dong Jin Lee, Hun Yun, S. Yoo, Ji Hyeon Kim
{"title":"Analysis of Material Loss Behavior According to Long-Term Experiments on LDIE-FAC Multiple Degradation of Carbon Steel Materials","authors":"K. Hwang, Dong Jin Lee, Hun Yun, S. Yoo, Ji Hyeon Kim","doi":"10.4236/wjnst.2022.121001","DOIUrl":null,"url":null,"abstract":"Recently, damage caused by liquid droplet impingement erosion (LDIE) in addition to flow-accelerated corrosion (FAC) has frequently occurred in the secondary side steam piping of nuclear power plants, and the damage-occurring frequency is expected to increase as their operating years’ increase. In order to scrutinize its causes, therefore, an experimental study was conducted to understand how the behavior of LDIE-FAC multiple degradation changes when the piping of nuclear power plants is operated for a long time. Experimental results show that more magnetite was formed on the surface of the carbon steel specimen than on the low-alloy steel specimen, and that the rate of magnetite formation and extinction reached equilibrium due to the com-plex action of liquid droplet impingement erosion and flow-accelerated corrosion after a certain period of time. Furthermore, it was confirmed at the beginning of the experiment that A106 Gr.B specimen has more mass loss than A335 P22 specimen. After a certain period of time, however, the mass loss tends to be the opposite. This is presumed to have resulted from the magnetite formed on the surface playing a role in suppressing liquid droplet impingement erosion. In addition, it was confirmed that the amount of erosion linearly increases under the conditions in which the formation and extinction of magnetite reach equilibrium.","PeriodicalId":61566,"journal":{"name":"核科学与技术国际期刊(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"核科学与技术国际期刊(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4236/wjnst.2022.121001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Recently, damage caused by liquid droplet impingement erosion (LDIE) in addition to flow-accelerated corrosion (FAC) has frequently occurred in the secondary side steam piping of nuclear power plants, and the damage-occurring frequency is expected to increase as their operating years’ increase. In order to scrutinize its causes, therefore, an experimental study was conducted to understand how the behavior of LDIE-FAC multiple degradation changes when the piping of nuclear power plants is operated for a long time. Experimental results show that more magnetite was formed on the surface of the carbon steel specimen than on the low-alloy steel specimen, and that the rate of magnetite formation and extinction reached equilibrium due to the com-plex action of liquid droplet impingement erosion and flow-accelerated corrosion after a certain period of time. Furthermore, it was confirmed at the beginning of the experiment that A106 Gr.B specimen has more mass loss than A335 P22 specimen. After a certain period of time, however, the mass loss tends to be the opposite. This is presumed to have resulted from the magnetite formed on the surface playing a role in suppressing liquid droplet impingement erosion. In addition, it was confirmed that the amount of erosion linearly increases under the conditions in which the formation and extinction of magnetite reach equilibrium.
基于LDIE-FAC复合降解碳钢材料长期试验的材料损耗行为分析
近年来,核电站二次侧蒸汽管道除流动加速腐蚀外,还经常发生液滴冲击侵蚀(LDIE)损伤,并且随着运行年限的增加,其发生频率有望增加。因此,为了探究其原因,我们进行了实验研究,了解核电站管道长时间运行时LDIE-FAC多重降解行为的变化。实验结果表明,碳钢试样表面形成的磁铁矿比低合金钢试样表面形成的磁铁矿多,经过一定时间后,由于液滴撞击侵蚀和流动加速腐蚀的综合作用,磁铁矿的形成和消光速率达到平衡。此外,在实验开始时就证实了A106 Gr.B试样的质量损失大于A335 P22试样。然而,经过一段时间后,质量损失趋于相反。据推测,这是由于表面形成的磁铁矿起到抑制液滴撞击侵蚀的作用。此外,还证实了在磁铁矿形成和消失达到平衡的条件下,侵蚀量呈线性增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
198
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信