The holomorph of an extra-special p–group

Q4 Mathematics
Parisa Seifizadeh, M. M. Nasrabadi
{"title":"The holomorph of an extra-special p–group","authors":"Parisa Seifizadeh, M. M. Nasrabadi","doi":"10.47743/ANSTIM.2021.00022","DOIUrl":null,"url":null,"abstract":"Let G be a group and S(G) be a group of permutations on the set G. Define the holomorph of G to be the normalizer of the image in S(G) of the right regular representation, Hol(G) = NS(G)(ρ(G)) = Aut(G)ρ(G). If N is a regular subgroup of S(G), then NS(G)(N) is isomorphic to the holomorph of G. Miller has shown that the group T (G) = NS(G)(Hol(G))/Hol(G) acts regularly on the set of the regular subgroups N of S(G) which are isomorphic to G, and have the same holomorph as G, in the sense that NS(G)(N) = Hol(G). In this paper we study T (G), when G is an extra-special p-group.","PeriodicalId":55523,"journal":{"name":"Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi - Matematica","volume":"67 1","pages":"309-317"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi - Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47743/ANSTIM.2021.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a group and S(G) be a group of permutations on the set G. Define the holomorph of G to be the normalizer of the image in S(G) of the right regular representation, Hol(G) = NS(G)(ρ(G)) = Aut(G)ρ(G). If N is a regular subgroup of S(G), then NS(G)(N) is isomorphic to the holomorph of G. Miller has shown that the group T (G) = NS(G)(Hol(G))/Hol(G) acts regularly on the set of the regular subgroups N of S(G) which are isomorphic to G, and have the same holomorph as G, in the sense that NS(G)(N) = Hol(G). In this paper we study T (G), when G is an extra-special p-group.
一个特殊p群的全变形
设G是集合G上的一个群,S(G)是集合G上的一个置换群。定义G的全纯形为S(G)中右正则表示(Hol(G) = NS(G)(ρ(G)) = Aut(G)ρ(G))的正规化子。如果N是S(G)的正则子群,则NS(G)(N)与G的全纯同构。Miller证明了群T (G) = NS(G)(Hol(G))/Hol(G)正则作用于S(G)的正则子群N的集合上,这些子群N与G同构,并且与G具有相同的全纯,在NS(G)(N) = Hol(G)的意义上。本文研究了当G是一个特殊p群时的T (G)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
2
审稿时长
>12 weeks
期刊介绍: This journal is devoted to the publication of original papers of moderate length addressed to a broad mathematical audience. It publishes results of original research and research-expository papers in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信