Symmetric functions of binary products of bivariate complex Lucas polynomials and some special numbers and polynomials

Q4 Mathematics
N. Saba, S. Boughaba, A. Boussayoud
{"title":"Symmetric functions of binary products of bivariate complex Lucas polynomials and some special numbers and polynomials","authors":"N. Saba, S. Boughaba, A. Boussayoud","doi":"10.47743/ANSTIM.2021.00014","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce an operator in order to derive some new symmetric properties of bivariate complex Lucas polynomials, then we give some new generating functions of the products of bivariate complex Lucas polynomials with Chebyshev polynomials of the first, second, third and fourth kinds, k-Fibonacci numbers, k-Lucas numbers, k-Pell numbers, k-Pell Lucas numbers, k-Jacobsthal numbers and k-Jacobsthal Lucas numbers. By making use of the operator defined in this paper, we give some new generating functions of the products of bivariate complex Lucas polynomials with Fibonacci polynomials, Pell polynomials and Jacobsthal polynomials.","PeriodicalId":55523,"journal":{"name":"Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi - Matematica","volume":"67 1","pages":"187-211"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi - Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47743/ANSTIM.2021.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce an operator in order to derive some new symmetric properties of bivariate complex Lucas polynomials, then we give some new generating functions of the products of bivariate complex Lucas polynomials with Chebyshev polynomials of the first, second, third and fourth kinds, k-Fibonacci numbers, k-Lucas numbers, k-Pell numbers, k-Pell Lucas numbers, k-Jacobsthal numbers and k-Jacobsthal Lucas numbers. By making use of the operator defined in this paper, we give some new generating functions of the products of bivariate complex Lucas polynomials with Fibonacci polynomials, Pell polynomials and Jacobsthal polynomials.
二元复Lucas多项式与一些特殊数和多项式的二元积的对称函数
本文引入一个算子,给出了二元复Lucas多项式与第一、二、三、四类Chebyshev多项式、k-Fibonacci数、k-Lucas数、k-Pell数、k-Pell Lucas数、k-Jacobsthal数、k-Jacobsthal Lucas数乘积的一些新的生成函数。利用本文定义的算子,给出了二元复Lucas多项式与Fibonacci多项式、Pell多项式和jacobthal多项式乘积的一些新的生成函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
2
审稿时长
>12 weeks
期刊介绍: This journal is devoted to the publication of original papers of moderate length addressed to a broad mathematical audience. It publishes results of original research and research-expository papers in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信