Magic conics, their integer points and complementary ellipses

Q4 Mathematics
M. Crasmareanu
{"title":"Magic conics, their integer points and complementary\nellipses","authors":"M. Crasmareanu","doi":"10.47743/ANSTIM.2021.00010","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to introduce and study the class of conics provided by the symmetric matrices of the 3 × 3 magic squares. This class depends on three real parameters and various relationships between these parameters give special subclasses of conics. Although there are no magic circles we find an ellipse, a parabola and two hyperbolas of magic type. A search of integer points and a complex approach are also included. We study also a pair of complementary ellipses, called Pythagorean.","PeriodicalId":55523,"journal":{"name":"Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi - Matematica","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi - Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47743/ANSTIM.2021.00010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

Abstract

The aim of this paper is to introduce and study the class of conics provided by the symmetric matrices of the 3 × 3 magic squares. This class depends on three real parameters and various relationships between these parameters give special subclasses of conics. Although there are no magic circles we find an ellipse, a parabola and two hyperbolas of magic type. A search of integer points and a complex approach are also included. We study also a pair of complementary ellipses, called Pythagorean.
神奇的二次曲线,它们的整数点和互补椭圆
本文的目的是引入并研究由3 × 3幻方的对称矩阵所提供的一类二次曲线。该类依赖于三个实参数,这些实参数之间的各种关系给出了二次曲线的特殊子类。虽然没有神奇的圆,但我们发现了一个椭圆、一条抛物线和两条神奇的双曲线。整数点的搜索和一个复杂的方法也包括在内。我们还研究了一对互补椭圆,称为毕达哥拉斯椭圆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
2
审稿时长
>12 weeks
期刊介绍: This journal is devoted to the publication of original papers of moderate length addressed to a broad mathematical audience. It publishes results of original research and research-expository papers in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信