The Analysis of Non-Stationary Pooled Time-Series Cross-Section-Data

IF 0.4 4区 社会学 Q4 INTERNATIONAL RELATIONS
Chris Birkel
{"title":"The Analysis of Non-Stationary Pooled Time-Series Cross-Section-Data","authors":"Chris Birkel","doi":"10.4119/UNIBI/IJCV.448","DOIUrl":null,"url":null,"abstract":"It is common in macro-level research on violent crime to analyze datasets combining a cross-section (N units) with a time-series (T periods) dimension. A large body of methodological literature accumulated since the 1990s raises questions regarding the validity of conventional models for such Pooled Time-Series Cross-Section- (PTCS) data in the presence of non-stationarity (i. e. stochastic trends). Extant research shows that conventional techniques lead to consistent estimates only under specific conditions, and standard procedures for statistical inference do not apply. The approaches proposed in the literature to test for stochastic trends and cointegration (see the introduction to this issue) are reviewed, as well as methods for estimation and inference in the non-stationary PTCS-context. A host of procedures has been developed, including methods to take simultaneously cross-section dependence and/or structural breaks into account. Thus there are now all the tools needed for valid analyses of non-stationary PTCS-data available, although many of them need large samples to perform well. The general approach to the analysis of non-stationary PTCS-data is illustrated using a data set with robbery rates for eleven West-German federal states 1971-2004. Several meaningful long-run relationships are identified and estimated in these analyses. Normal 0 21 false false false DE X-NONE X-NONE /* Style Definitions */ \n table.MsoNormalTable \n {mso-style-name:\"Normale Tabelle\"; \n mso-tstyle-rowband-size:0; \n mso-tstyle-colband-size:0; \n mso-style-noshow:yes; \n mso-style-priority:99; \n mso-style-parent:\"\"; \n mso-padding-alt:0cm 5.4pt 0cm 5.4pt; \n mso-para-margin-top:0cm; \n mso-para-margin-right:0cm; \n mso-para-margin-bottom:10.0pt; \n mso-para-margin-left:0cm; \n line-height:115%; \n mso-pagination:widow-orphan; \n font-size:11.0pt; \n font-family:\"Calibri\",\"sans-serif\"; \n mso-ascii-font-family:Calibri; \n mso-ascii-theme-font:minor-latin; \n mso-hansi-font-family:Calibri; \n mso-hansi-theme-font:minor-latin; \n mso-fareast-language:EN-US;}","PeriodicalId":45781,"journal":{"name":"International Journal of Conflict and Violence","volume":"8 1","pages":"222-242"},"PeriodicalIF":0.4000,"publicationDate":"2015-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4119/UNIBI/IJCV.448","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Conflict and Violence","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.4119/UNIBI/IJCV.448","RegionNum":4,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INTERNATIONAL RELATIONS","Score":null,"Total":0}
引用次数: 9

Abstract

It is common in macro-level research on violent crime to analyze datasets combining a cross-section (N units) with a time-series (T periods) dimension. A large body of methodological literature accumulated since the 1990s raises questions regarding the validity of conventional models for such Pooled Time-Series Cross-Section- (PTCS) data in the presence of non-stationarity (i. e. stochastic trends). Extant research shows that conventional techniques lead to consistent estimates only under specific conditions, and standard procedures for statistical inference do not apply. The approaches proposed in the literature to test for stochastic trends and cointegration (see the introduction to this issue) are reviewed, as well as methods for estimation and inference in the non-stationary PTCS-context. A host of procedures has been developed, including methods to take simultaneously cross-section dependence and/or structural breaks into account. Thus there are now all the tools needed for valid analyses of non-stationary PTCS-data available, although many of them need large samples to perform well. The general approach to the analysis of non-stationary PTCS-data is illustrated using a data set with robbery rates for eleven West-German federal states 1971-2004. Several meaningful long-run relationships are identified and estimated in these analyses. Normal 0 21 false false false DE X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Normale Tabelle"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-fareast-language:EN-US;}
非平稳池化时间序列截面数据的分析
在暴力犯罪的宏观层面研究中,分析结合横截面(N个单位)和时间序列(T个周期)维度的数据集是很常见的。自20世纪90年代以来积累的大量方法学文献对存在非平稳性(即随机趋势)的混合时间序列截面(PTCS)数据的传统模型的有效性提出了质疑。现有的研究表明,传统技术只能在特定条件下得出一致的估计,而统计推断的标准程序并不适用。回顾了文献中提出的随机趋势和协整检验方法(参见本问题的介绍),以及在非平稳ptcs背景下的估计和推断方法。已经开发了许多程序,包括同时考虑截面依赖性和/或结构断裂的方法。因此,现在有了对非平稳ptcs数据进行有效分析所需的所有工具,尽管其中许多工具需要大样本才能表现良好。分析非平稳ptcs数据的一般方法是用1971-2004年西德11个联邦州的抢劫率数据集来说明的。在这些分析中,确定和估计了几个有意义的长期关系。正常0 21 false false false DE X-NONE X-NONE /*样式定义*/表。mso-style-name:"Normale table ";mso-tstyle-rowband-size: 0;mso-tstyle-colband-size: 0;mso-style-noshow:是的;mso-style-priority: 99;mso-style-parent:“”;Mso-padding-alt:0cm 5.4pt;mso-para-margin-top: 0厘米;mso-para-margin-right: 0厘米;mso-para-margin-bottom: 10.0分;mso-para-margin-left: 0厘米;行高:115%;mso-pagination: widow-orphan;字体大小:11.0分;字体类型:“Calibri”、“无衬线”;mso-ascii-font-family: Calibri;mso-ascii-theme-font: minor-latin;mso-hansi-font-family: Calibri;mso-hansi-theme-font: minor-latin;mso-fareast-language: en - us;}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.20
自引率
0.00%
发文量
0
审稿时长
32 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信