A new semi-analytical model for retrieving chlorophyll a concentration and magnitude of fluorescence in the South China Sea

IF 1.5 4区 地球科学 Q3 MARINE & FRESHWATER BIOLOGY
Chaoyu Yang, Haibin Ye
{"title":"A new semi-analytical model for retrieving chlorophyll a concentration and magnitude of fluorescence in the South China Sea","authors":"Chaoyu Yang, Haibin Ye","doi":"10.5343/bms.2021.0020","DOIUrl":null,"url":null,"abstract":"The red band signal of the color spectrum is of significant interest because its remote sensing reflectance yields valuable information on phytoplankton. In this study, we combined a fluorescence model with a modified version of the Garver-Siegel-Maritorena (GSM) algorithm to retrieve the chlorophyll a concentration (Chla) and the magnitude of fluorescence in coastal waters. An analytical inverse optimization procedure was performed using the measured reflectance over the whole visible spectrum with a focus on the Ocean and Land Color Instrument (OLCI) sensor (from 413 to 709 nm). The coupled visible-infrared model (GSM&Fluo) was validated by a comparison with Chla that was measured in situ in a wide variety of productive coastal water conditions in the South China Sea. The coefficients of determination (r2) were 0.79 and 0.88 for the GSM and our algorithm, respectively. The combined approach produced more accurate results in our study location. The coupled GSM&Fluo model was able to avoid being trapped in a local optimum by adding an estimation of the fluorescence signal. The results also showed that the suspended particulate matter (SPM) played a major role in the magnitude of the reflectance peak in the chlorophyll fluorescence emission band, and the Fluorescence Line Height (FLH) calculated with a simple baseline approach tended to overestimate the true magnitude of the fluorescence emission as SPM increased.","PeriodicalId":55312,"journal":{"name":"Bulletin of Marine Science","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Marine Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5343/bms.2021.0020","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The red band signal of the color spectrum is of significant interest because its remote sensing reflectance yields valuable information on phytoplankton. In this study, we combined a fluorescence model with a modified version of the Garver-Siegel-Maritorena (GSM) algorithm to retrieve the chlorophyll a concentration (Chla) and the magnitude of fluorescence in coastal waters. An analytical inverse optimization procedure was performed using the measured reflectance over the whole visible spectrum with a focus on the Ocean and Land Color Instrument (OLCI) sensor (from 413 to 709 nm). The coupled visible-infrared model (GSM&Fluo) was validated by a comparison with Chla that was measured in situ in a wide variety of productive coastal water conditions in the South China Sea. The coefficients of determination (r2) were 0.79 and 0.88 for the GSM and our algorithm, respectively. The combined approach produced more accurate results in our study location. The coupled GSM&Fluo model was able to avoid being trapped in a local optimum by adding an estimation of the fluorescence signal. The results also showed that the suspended particulate matter (SPM) played a major role in the magnitude of the reflectance peak in the chlorophyll fluorescence emission band, and the Fluorescence Line Height (FLH) calculated with a simple baseline approach tended to overestimate the true magnitude of the fluorescence emission as SPM increased.
一种反演南海叶绿素A浓度和荧光强度的新半解析模型
光谱中的红色波段信号具有重要意义,因为它的遥感反射率提供了有关浮游植物的宝贵信息。在本研究中,我们将荧光模型与改进版的Garver-Siegel-Maritorena (GSM)算法相结合,以检索沿海水域的叶绿素a浓度(Chla)和荧光强度。利用测量的整个可见光谱反射率,以海洋和陆地颜色仪器(OLCI)传感器(413 ~ 709 nm)为重点,进行了分析逆优化程序。GSM&Fluo耦合模式通过与南海多种生产水域条件下原位测量的Chla进行对比验证。GSM和算法的决定系数(r2)分别为0.79和0.88。综合方法在我们的研究地点产生了更准确的结果。GSM&Fluo耦合模型通过增加对荧光信号的估计,避免了陷入局部最优。结果还表明,悬浮颗粒物(SPM)对叶绿素荧光发射波段反射峰的大小起主要作用,随着悬浮颗粒物(SPM)的增加,用简单基线法计算的荧光线高度(FLH)往往高估了荧光发射的真实大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bulletin of Marine Science
Bulletin of Marine Science 地学-海洋学
CiteScore
2.90
自引率
6.70%
发文量
25
审稿时长
6-12 weeks
期刊介绍: The Bulletin of Marine Science is a hybrid open access journal dedicated to the dissemination of research dealing with the waters of the world’s oceans. All aspects of marine science are treated by the Bulletin of Marine Science, including papers in marine biology, biological oceanography, fisheries, marine policy, applied marine physics, marine geology and geophysics, marine and atmospheric chemistry, meteorology, and physical oceanography. In most regular issues the Bulletin features separate sections on new taxa, coral reefs, and novel research gear, instrument, device, or system with potential to advance marine research (“Research Tools in Marine Science”). Additionally, the Bulletin publishes informative stand-alone artwork with accompany text in its section "Portraits of Marine Science."
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信