Detection of Angioectasias and Haemorrhages Incorporated into a Multi-Class Classification Tool for the GI Tract Anomalies by Using Binary CNNs

Christos Barbagiannis, Alexios A Polydorou, M. Zervakis, A. Polydorou, Eleftheria Sergaki
{"title":"Detection of Angioectasias and Haemorrhages Incorporated into a Multi-Class Classification Tool for the GI Tract Anomalies by Using Binary CNNs","authors":"Christos Barbagiannis, Alexios A Polydorou, M. Zervakis, A. Polydorou, Eleftheria Sergaki","doi":"10.4236/jbise.2021.1412034","DOIUrl":null,"url":null,"abstract":"The proposed deep learning algorithm will be integrated as a binary classifier under the umbrella of a multi-class classification tool to facilitate the automated detection of non-healthy deformities, anatomical landmarks, pathological findings, other anomalies and normal cases, by examining medical endoscopic images of GI tract. Each binary classifier is trained to detect one specific non-healthy condition. The algorithm analyzed in the present work expands the ability of detection of this tool by classifying GI tract image snapshots into two classes, depicting haemorrhage and non-haemorrhage state. The proposed algorithm","PeriodicalId":64231,"journal":{"name":"生物医学工程(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物医学工程(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4236/jbise.2021.1412034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The proposed deep learning algorithm will be integrated as a binary classifier under the umbrella of a multi-class classification tool to facilitate the automated detection of non-healthy deformities, anatomical landmarks, pathological findings, other anomalies and normal cases, by examining medical endoscopic images of GI tract. Each binary classifier is trained to detect one specific non-healthy condition. The algorithm analyzed in the present work expands the ability of detection of this tool by classifying GI tract image snapshots into two classes, depicting haemorrhage and non-haemorrhage state. The proposed algorithm
基于二元cnn的胃肠道异常多分类工具中血管扩张和出血的检测
本文提出的深度学习算法将被整合为一个二元分类器,在多类分类工具的框架下,通过检查胃肠道的医学内窥镜图像,实现对非健康畸形、解剖标志、病理发现、其他异常和正常情况的自动检测。每个二元分类器被训练来检测一个特定的非健康状态。本工作中分析的算法通过将胃肠道图像快照分为两类,描绘出血和非出血状态,扩展了该工具的检测能力。提出的算法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
900
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信