Study of Timing Characteristics of NOT Gate Transistor Level Circuit Implemented Using Nano-MOSFET by Analyzing Sub-Band Potential Energy Profile and Current-Voltage Characteristic of Quasi-Ballistic Transport

Chek Yee Ooi, S. Lim
{"title":"Study of Timing Characteristics of NOT Gate Transistor Level Circuit Implemented Using Nano-MOSFET by Analyzing Sub-Band Potential Energy Profile and Current-Voltage Characteristic of Quasi-Ballistic Transport","authors":"Chek Yee Ooi, S. Lim","doi":"10.4236/WJNSE.2016.64016","DOIUrl":null,"url":null,"abstract":"This paper presents the quasi-ballistic electron transport of a symmetric double-gate (DG) nano-MOSFET with 10 nm gate length and implementation of logical NOT transistor circuit using this nano-MOSFET. Theoretical calculation and simulation using NanoMOS have been done to obtain parameters such as ballistic efficiency, backscattering mean free path, backscattering coefficient, critical length, thermal velocity, capacitances, resistance and drain current. NanoMOS is an on-line device simulator. Theoretical and simulated drain current per micro of width is closely matched. Transistor loaded NOT gate is simulated using WinSpice. Theoretical and simulated value of rise time, fall time, propagation delay and maximum signal frequency of logical NOT transistor level circuit is closely matched. Quasi-ballistic transport has been investigated in this paper since modern MOSFET devices operate between the drift-diffusion and ballistic regimes. This paper aims to enable modern semiconductor device engineers to become familiar with both approaches.","PeriodicalId":66816,"journal":{"name":"纳米科学与工程(英文)","volume":"06 1","pages":"177-188"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"纳米科学与工程(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/WJNSE.2016.64016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents the quasi-ballistic electron transport of a symmetric double-gate (DG) nano-MOSFET with 10 nm gate length and implementation of logical NOT transistor circuit using this nano-MOSFET. Theoretical calculation and simulation using NanoMOS have been done to obtain parameters such as ballistic efficiency, backscattering mean free path, backscattering coefficient, critical length, thermal velocity, capacitances, resistance and drain current. NanoMOS is an on-line device simulator. Theoretical and simulated drain current per micro of width is closely matched. Transistor loaded NOT gate is simulated using WinSpice. Theoretical and simulated value of rise time, fall time, propagation delay and maximum signal frequency of logical NOT transistor level circuit is closely matched. Quasi-ballistic transport has been investigated in this paper since modern MOSFET devices operate between the drift-diffusion and ballistic regimes. This paper aims to enable modern semiconductor device engineers to become familiar with both approaches.
基于准弹道输运子带势能分布和电流-电压特性的纳米mosfet非门晶体管电平电路时序特性研究
本文介绍了栅极长度为10nm的对称双栅极(DG)纳米mosfet的准弹道电子输运,并利用该纳米mosfet实现了逻辑非晶体管电路。利用NanoMOS进行了理论计算和仿真,得到了弹道效率、后向散射平均自由程、后向散射系数、临界长度、热速度、电容、电阻和漏极电流等参数。NanoMOS是一个在线设备模拟器。理论和模拟的每微宽度漏极电流是紧密匹配的。利用WinSpice对晶体管负载非栅极进行了仿真。逻辑非晶体管电平电路的上升时间、下降时间、传播延迟和最大信号频率的理论值与仿真值非常吻合。由于现代MOSFET器件工作在漂移扩散和弹道状态之间,本文研究了准弹道输运。本文旨在使现代半导体器件工程师熟悉这两种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
103
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信