Design and Analysis of Ensemble Classifier for Gene Expression Data of Cancer

Nianfeng Song, Kun Wang, Menglu Xu, Xiao-Ying Xie, Ganneng Chen, Ying Wang
{"title":"Design and Analysis of Ensemble Classifier for Gene Expression Data of Cancer","authors":"Nianfeng Song, Kun Wang, Menglu Xu, Xiao-Ying Xie, Ganneng Chen, Ying Wang","doi":"10.4172/2169-0111.1000152","DOIUrl":null,"url":null,"abstract":"Gene expression levels are important for disease, such as, Cancer diagnosis. This paper proposed a SVM-based ensemble classifier to classify the control and cancer groups based on gene expression levels from microarray data. A combinational Recursive Feature Elimination in conjunction with the Adaboost algorithm was developed to select significant features and design the proper classifier. The method is applied to microarray data of cancer patients, and the results show improvements on the success rate. By AUC calculation, the SVM-based ensemble classifier shows predominate performance. Furthermore, the characteristics and different effect issues to classification performance is discussed. If a single SVM can obtain satisfactory classification performance, an ensemble SVM is hardly capable to improve it. Otherwise, an ensemble of SVM is superior to the best single SVM. We also investigated the effect of kernel functions, feature selections and type of classifiers on the classification.","PeriodicalId":89733,"journal":{"name":"Advancements in genetic engineering","volume":"2016 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advancements in genetic engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2169-0111.1000152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Gene expression levels are important for disease, such as, Cancer diagnosis. This paper proposed a SVM-based ensemble classifier to classify the control and cancer groups based on gene expression levels from microarray data. A combinational Recursive Feature Elimination in conjunction with the Adaboost algorithm was developed to select significant features and design the proper classifier. The method is applied to microarray data of cancer patients, and the results show improvements on the success rate. By AUC calculation, the SVM-based ensemble classifier shows predominate performance. Furthermore, the characteristics and different effect issues to classification performance is discussed. If a single SVM can obtain satisfactory classification performance, an ensemble SVM is hardly capable to improve it. Otherwise, an ensemble of SVM is superior to the best single SVM. We also investigated the effect of kernel functions, feature selections and type of classifiers on the classification.
肿瘤基因表达数据集成分类器的设计与分析
基因表达水平对疾病非常重要,比如癌症的诊断。本文提出了一种基于支持向量机的集成分类器,根据微阵列数据中的基因表达水平对对照组和癌症组进行分类。结合Adaboost算法,开发了一种组合递归特征消除方法来选择重要特征并设计合适的分类器。将该方法应用于肿瘤患者的微阵列数据,结果表明成功率有所提高。通过AUC计算,基于支持向量机的集成分类器表现出优势性能。在此基础上,讨论了分类性能的特点及其对分类性能的影响。如果单个支持向量机可以获得满意的分类性能,那么集成支持向量机很难改进它。除此之外,支持向量机的集合优于最佳的单个支持向量机。我们还研究了核函数、特征选择和分类器类型对分类的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信