On transfer operators on the circle with trigonometric weights

IF 1.1 4区 数学 Q1 MATHEMATICS
Xianghong Chen, H. Volkmer
{"title":"On transfer operators on the circle with trigonometric weights","authors":"Xianghong Chen, H. Volkmer","doi":"10.4171/JFG/64","DOIUrl":null,"url":null,"abstract":"We study spectral properties of the transfer operators $L$ defined on the circle $\\mathbb T=\\mathbb R/\\mathbb Z$ by $$(Lu)(t)=\\frac{1}{d}\\sum_{i=0}^{d-1} f\\left(\\frac{t+i}{d}\\right)u\\left(\\frac{t+i}{d}\\right),\\ t\\in\\mathbb T$$ where $u$ is a function on $\\mathbb T$. We focus in particular on the cases $f(t)=|\\cos(\\pi t)|^q$ and $f(t)=|\\sin(\\pi t)|^q$, which are closely related to some classical Fourier-analytic questions. We also obtain some explicit computations, particularly in the case $d=2$. Our study extends work of Strichartz \\cite{Strichartz1990} and Fan and Lau \\cite{FanLau1998}.","PeriodicalId":48484,"journal":{"name":"Journal of Fractal Geometry","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/JFG/64","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fractal Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/JFG/64","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We study spectral properties of the transfer operators $L$ defined on the circle $\mathbb T=\mathbb R/\mathbb Z$ by $$(Lu)(t)=\frac{1}{d}\sum_{i=0}^{d-1} f\left(\frac{t+i}{d}\right)u\left(\frac{t+i}{d}\right),\ t\in\mathbb T$$ where $u$ is a function on $\mathbb T$. We focus in particular on the cases $f(t)=|\cos(\pi t)|^q$ and $f(t)=|\sin(\pi t)|^q$, which are closely related to some classical Fourier-analytic questions. We also obtain some explicit computations, particularly in the case $d=2$. Our study extends work of Strichartz \cite{Strichartz1990} and Fan and Lau \cite{FanLau1998}.
关于三角权圆上的传递算子
我们研究了$$(Lu)(t)=\frac{1}{d}\sum_{i=0}^{d-1} f\left(\frac{t+i}{d}\right)u\left(\frac{t+i}{d}\right),\ t\in\mathbb T$$在圆$\mathbb T=\mathbb R/\mathbb Z$上定义的传递算子$L$的谱性质,其中$u$是$\mathbb T$上的一个函数。我们特别关注与一些经典傅立叶分析问题密切相关的情况$f(t)=|\cos(\pi t)|^q$和$f(t)=|\sin(\pi t)|^q$。我们也得到了一些显式的计算,特别是在$d=2$的情况下。我们的研究扩展了Strichartz \cite{Strichartz1990}和Fan and Lau \cite{FanLau1998}的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信