{"title":"Degenerate limits for one-parameter families of non-fixed-point diffusions on fractals","authors":"B. Hambly, Weiye Yang","doi":"10.4171/JFG/67","DOIUrl":null,"url":null,"abstract":"The Sierpinski gasket is known to support an exotic stochastic process called the asymptotically one-dimensional diffusion. This process displays local anisotropy, as there is a preferred direction of motion which dominates at the microscale, but on the macroscale we see global isotropy in that the process will behave like the canonical Brownian motion on the fractal. In this paper we analyse the microscale behaviour of such processes, which we call non-fixed point diffusions, for a class of fractals and show that there is a natural limit diffusion associated with the small scale asymptotics. This limit process no longer lives on the original fractal but is supported by another fractal, which is the Gromov-Hausdorff limit of the original set after a shorting operation is performed on the dominant microscale direction of motion. We establish the weak convergence of the rescaled diffusions in a general setting and use this to answer a question raised in Hattori (1994) about the ultraviolet limit of the asymptotically one-dimensional diffusion process on the Sierpinski gasket.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2016-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/JFG/67","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/JFG/67","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4
Abstract
The Sierpinski gasket is known to support an exotic stochastic process called the asymptotically one-dimensional diffusion. This process displays local anisotropy, as there is a preferred direction of motion which dominates at the microscale, but on the macroscale we see global isotropy in that the process will behave like the canonical Brownian motion on the fractal. In this paper we analyse the microscale behaviour of such processes, which we call non-fixed point diffusions, for a class of fractals and show that there is a natural limit diffusion associated with the small scale asymptotics. This limit process no longer lives on the original fractal but is supported by another fractal, which is the Gromov-Hausdorff limit of the original set after a shorting operation is performed on the dominant microscale direction of motion. We establish the weak convergence of the rescaled diffusions in a general setting and use this to answer a question raised in Hattori (1994) about the ultraviolet limit of the asymptotically one-dimensional diffusion process on the Sierpinski gasket.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.