{"title":"Numerical integration for fractal measures","authors":"Jens Malmquist, R. Strichartz","doi":"10.4171/JFG/60","DOIUrl":null,"url":null,"abstract":"We find estimates for the error in replacing an integral $\\int f d\\mu$ with respect to a fractal measure $\\mu$ with a discrete sum $\\sum_{x \\in E} w(x) f(x)$ over a given sample set $E$ with weights $w$. Our model is the classical Koksma-Hlawka theorem for integrals over rectangles, where the error is estimated by a product of a discrepancy that depends only on the geometry of the sample set and weights, and variance that depends only on the smoothness of $f$. We deal with p.c.f self-similar fractals, on which Kigami has constructed notions of energy and Laplacian. We develop generic results where we take the variance to be either the energy of $f$ or the $L^1$ norm of $\\Delta f$, and we show how to find the corresponding discrepancies for each variance. We work out the details for a number of interesting examples of sample sets for the Sierpinski gasket, both for the standard self-similar measure and energy measures, and for other fractals.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2016-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/JFG/60","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/JFG/60","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
We find estimates for the error in replacing an integral $\int f d\mu$ with respect to a fractal measure $\mu$ with a discrete sum $\sum_{x \in E} w(x) f(x)$ over a given sample set $E$ with weights $w$. Our model is the classical Koksma-Hlawka theorem for integrals over rectangles, where the error is estimated by a product of a discrepancy that depends only on the geometry of the sample set and weights, and variance that depends only on the smoothness of $f$. We deal with p.c.f self-similar fractals, on which Kigami has constructed notions of energy and Laplacian. We develop generic results where we take the variance to be either the energy of $f$ or the $L^1$ norm of $\Delta f$, and we show how to find the corresponding discrepancies for each variance. We work out the details for a number of interesting examples of sample sets for the Sierpinski gasket, both for the standard self-similar measure and energy measures, and for other fractals.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.