Metric results for numbers with multiple $q$-expansions

IF 1.1 4区 数学 Q1 MATHEMATICS
S. Baker, Yuru Zou
{"title":"Metric results for numbers with multiple $q$-expansions","authors":"S. Baker, Yuru Zou","doi":"10.4171/jfg/131","DOIUrl":null,"url":null,"abstract":"Let $M$ be a positive integer and $q\\in (1, M+1]$. A $q$-expansion of a real number $x$ is a sequence $(c_i)=c_1c_2\\cdots$ with $c_i\\in \\{0,1,\\ldots, M\\}$ such that $x=\\sum_{i=1}^{\\infty}c_iq^{-i}$. In this paper we study the set $\\mathcal{U}_q^j$ consisting of those real numbers having exactly $j$ $q$-expansions. Our main result is that for Lebesgue almost every $q\\in (q_{KL}, M+1), $ we have $$\\dim_{H}\\mathcal{U}_{q}^{j}\\leq \\max\\{0, 2\\dim_H\\mathcal{U}_q-1\\}\\text{ for all } j\\in\\{2,3,\\ldots\\}.$$ Here $q_{KL}$ is the Komornik-Loreti constant. As a corollary of this result, we show that for any $j\\in\\{2,3,\\ldots\\},$ the function mapping $q$ to $\\dim_{H}\\mathcal{U}_{q}^{j}$ is not continuous.","PeriodicalId":48484,"journal":{"name":"Journal of Fractal Geometry","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fractal Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jfg/131","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $M$ be a positive integer and $q\in (1, M+1]$. A $q$-expansion of a real number $x$ is a sequence $(c_i)=c_1c_2\cdots$ with $c_i\in \{0,1,\ldots, M\}$ such that $x=\sum_{i=1}^{\infty}c_iq^{-i}$. In this paper we study the set $\mathcal{U}_q^j$ consisting of those real numbers having exactly $j$ $q$-expansions. Our main result is that for Lebesgue almost every $q\in (q_{KL}, M+1), $ we have $$\dim_{H}\mathcal{U}_{q}^{j}\leq \max\{0, 2\dim_H\mathcal{U}_q-1\}\text{ for all } j\in\{2,3,\ldots\}.$$ Here $q_{KL}$ is the Komornik-Loreti constant. As a corollary of this result, we show that for any $j\in\{2,3,\ldots\},$ the function mapping $q$ to $\dim_{H}\mathcal{U}_{q}^{j}$ is not continuous.
具有多个$q$展开的数字的度量结果
设$M$为正整数,$q\in (1, M+1]$。实数$x$的$q$ -展开是一个含有$c_i\in \{0,1,\ldots, M\}$的序列$(c_i)=c_1c_2\cdots$,使得$x=\sum_{i=1}^{\infty}c_iq^{-i}$。本文研究了由恰好具有$j$$q$ -展开式的实数组成的集合$\mathcal{U}_q^j$。我们的主要结果是,对于勒贝格,几乎每一个$q\in (q_{KL}, M+1), $我们都有$$\dim_{H}\mathcal{U}_{q}^{j}\leq \max\{0, 2\dim_H\mathcal{U}_q-1\}\text{ for all } j\in\{2,3,\ldots\}.$$这里$q_{KL}$是Komornik-Loreti常数。作为这个结果的推论,我们证明对于任何$j\in\{2,3,\ldots\},$,将$q$映射到$\dim_{H}\mathcal{U}_{q}^{j}$的函数是不连续的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信