{"title":"Affine embeddings of Cantor sets on the line","authors":"A. Algom","doi":"10.4171/jfg/63","DOIUrl":null,"url":null,"abstract":"Let $s\\in (0,1)$, and let $F\\subset \\mathbb{R}$ be a self similar set such that $0 0$ such that if $F$ admits an affine embedding into a homogeneous self similar set $E$ and $0 \\leq \\dim_H E - \\dim_H F < \\delta$ then (under some mild conditions on $E$ and $F$) the contraction ratios of $E$ and $F$ are logarithmically commensurable. This provides more evidence for a Conjecture of Feng, Huang, and Rao, that states that these contraction ratios are logarithmically commensurable whenever $F$ admits an affine embedding into $E$ (under some mild conditions). Our method is a combination of an argument based on the approach of Feng, Huang, and Rao, with a new result by Hochman, which is related to the increase of entropy of measures under convolutions.","PeriodicalId":48484,"journal":{"name":"Journal of Fractal Geometry","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2016-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/jfg/63","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fractal Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jfg/63","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11
Abstract
Let $s\in (0,1)$, and let $F\subset \mathbb{R}$ be a self similar set such that $0 0$ such that if $F$ admits an affine embedding into a homogeneous self similar set $E$ and $0 \leq \dim_H E - \dim_H F < \delta$ then (under some mild conditions on $E$ and $F$) the contraction ratios of $E$ and $F$ are logarithmically commensurable. This provides more evidence for a Conjecture of Feng, Huang, and Rao, that states that these contraction ratios are logarithmically commensurable whenever $F$ admits an affine embedding into $E$ (under some mild conditions). Our method is a combination of an argument based on the approach of Feng, Huang, and Rao, with a new result by Hochman, which is related to the increase of entropy of measures under convolutions.