Affine embeddings of Cantor sets on the line

IF 1.1 4区 数学 Q1 MATHEMATICS
A. Algom
{"title":"Affine embeddings of Cantor sets on the line","authors":"A. Algom","doi":"10.4171/jfg/63","DOIUrl":null,"url":null,"abstract":"Let $s\\in (0,1)$, and let $F\\subset \\mathbb{R}$ be a self similar set such that $0 0$ such that if $F$ admits an affine embedding into a homogeneous self similar set $E$ and $0 \\leq \\dim_H E - \\dim_H F < \\delta$ then (under some mild conditions on $E$ and $F$) the contraction ratios of $E$ and $F$ are logarithmically commensurable. This provides more evidence for a Conjecture of Feng, Huang, and Rao, that states that these contraction ratios are logarithmically commensurable whenever $F$ admits an affine embedding into $E$ (under some mild conditions). Our method is a combination of an argument based on the approach of Feng, Huang, and Rao, with a new result by Hochman, which is related to the increase of entropy of measures under convolutions.","PeriodicalId":48484,"journal":{"name":"Journal of Fractal Geometry","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2016-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/jfg/63","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fractal Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jfg/63","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11

Abstract

Let $s\in (0,1)$, and let $F\subset \mathbb{R}$ be a self similar set such that $0 0$ such that if $F$ admits an affine embedding into a homogeneous self similar set $E$ and $0 \leq \dim_H E - \dim_H F < \delta$ then (under some mild conditions on $E$ and $F$) the contraction ratios of $E$ and $F$ are logarithmically commensurable. This provides more evidence for a Conjecture of Feng, Huang, and Rao, that states that these contraction ratios are logarithmically commensurable whenever $F$ admits an affine embedding into $E$ (under some mild conditions). Our method is a combination of an argument based on the approach of Feng, Huang, and Rao, with a new result by Hochman, which is related to the increase of entropy of measures under convolutions.
康托集合在直线上的仿射嵌入
设$s\in (0,1)$和$F\subset \mathbb{R}$是一个自相似集,使得$0 0$这样,如果$F$允许仿射嵌入到同质的自相似集$E$和$0 \leq \dim_H E - \dim_H F < \delta$中,那么(在$E$和$F$的一些温和条件下)$E$和$F$的收缩比是对数可通约的。这为Feng, Huang和Rao的猜想提供了更多的证据,该猜想指出,只要$F$允许仿射嵌入$E$(在一些温和的条件下),这些收缩比率在对数上是可通约的。我们的方法是基于Feng, Huang和Rao的方法的论证与Hochman的新结果的结合,该结果与卷积下测度熵的增加有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信