Satoshi Watanabe, S. Haraguchi, Shingo Nakamura, T. Sakurai, S. Mugikura, K. Kajiwara, M. Kimura, Masahiro Sato
{"title":"Novel Cancer Vaccination System Based on Human Endo-Β-N-Acetyl Glucosaminidase Gene Delivery","authors":"Satoshi Watanabe, S. Haraguchi, Shingo Nakamura, T. Sakurai, S. Mugikura, K. Kajiwara, M. Kimura, Masahiro Sato","doi":"10.4172/2168-958X.1000106","DOIUrl":null,"url":null,"abstract":"Cancer vaccination elicits an immune response against specific glycans or proteins expressed on the cell surface after gene transfer has occurred. We previously demonstrated that N-acetylglucosamine (GlcNAc) residues exposed after digestion with endo-β-galactosidase, a carbohydrate-digesting enzyme, elicited this type of immune response, probably as a result of the presence of natural antibodies recognizing GlcNAc residues in host animals. Treatment of a cell with endo-β-N-acetylglucosaminidase (ENGase), an enzyme that cleaves the amide bond between the proximal GlcNAc residues at the side chain of an asparagine residue on N-glycans, also causes exposure of GlcNAc residues on the cell surface. In this study, we examined whether mouse melanoma B16 cells transfected with a human ENGase (hENGase) cDNA expression construct, are susceptible to an immune attack after subcutaneous grafting to the syngenic host. The recombinant B16 cells overexpressing hENGase had approximately 3-fold more cell-surface GlcNAc residues than their parental cells. The grafting experiment revealed that the tumor size was approximately one-tenth of that derived from wild-type grafted cells. Direct injection and subsequent in vivo electroporation of a hENGase expression vector into B16 solid tumors resulted in regression of the tumors. Our present results strongly suggest that the ENGase is a useful tool for novel cancer vaccination.","PeriodicalId":92404,"journal":{"name":"Journal of glycobiology","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of glycobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2168-958X.1000106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Cancer vaccination elicits an immune response against specific glycans or proteins expressed on the cell surface after gene transfer has occurred. We previously demonstrated that N-acetylglucosamine (GlcNAc) residues exposed after digestion with endo-β-galactosidase, a carbohydrate-digesting enzyme, elicited this type of immune response, probably as a result of the presence of natural antibodies recognizing GlcNAc residues in host animals. Treatment of a cell with endo-β-N-acetylglucosaminidase (ENGase), an enzyme that cleaves the amide bond between the proximal GlcNAc residues at the side chain of an asparagine residue on N-glycans, also causes exposure of GlcNAc residues on the cell surface. In this study, we examined whether mouse melanoma B16 cells transfected with a human ENGase (hENGase) cDNA expression construct, are susceptible to an immune attack after subcutaneous grafting to the syngenic host. The recombinant B16 cells overexpressing hENGase had approximately 3-fold more cell-surface GlcNAc residues than their parental cells. The grafting experiment revealed that the tumor size was approximately one-tenth of that derived from wild-type grafted cells. Direct injection and subsequent in vivo electroporation of a hENGase expression vector into B16 solid tumors resulted in regression of the tumors. Our present results strongly suggest that the ENGase is a useful tool for novel cancer vaccination.