In Silico modeling of voltage-gated sodium channel alpha subunit to understand insecticide binding simulation in mosquitoes

M. Sarkar, A. Borkotoki
{"title":"In Silico modeling of voltage-gated sodium channel alpha subunit to understand insecticide binding simulation in mosquitoes","authors":"M. Sarkar, A. Borkotoki","doi":"10.5376/JMR.2015.05.0023","DOIUrl":null,"url":null,"abstract":"The Voltage Gated Sodium Channel (VGSC) is critical for binding of different insecticides and play key role in insecticide resistance. An important mechanism of resistance to DDT and pyrethroids is termed knockdown resistance (kdr), caused by mutations in IIS6 domain of sodium channels. To attain a better management strategy for insecticide resistance and screening of new insecticide molecules, it is important to understand the three-dimensional structure of insecticide-binding domain of VGSC and its molecular interaction with insecticides. We constructed a theoretical model of ion transport domain–II of VGSC from mosquitoes, Culex quinquefasciatus . The stereochemistry of the model shows 91.1% residues are in the most favored region. Docking studies with DDT and deltamethrin indicated that deltamethrin showed interaction with Thr 929 , Met 918 , Ile 936 , Cys 933 , Leu 925 , Glu 881 , Met 857 and Gly 866 and DDT showed interaction with Ile 936 , Thr 929 , Ser 878 , Phe 863 , Gln 864 , Trp 861 and Met 857 . We also predicted that mutation of Thr 929 should confer resistance to both DDT and deltamethrin.","PeriodicalId":92079,"journal":{"name":"Journal of mosquito research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of mosquito research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5376/JMR.2015.05.0023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Voltage Gated Sodium Channel (VGSC) is critical for binding of different insecticides and play key role in insecticide resistance. An important mechanism of resistance to DDT and pyrethroids is termed knockdown resistance (kdr), caused by mutations in IIS6 domain of sodium channels. To attain a better management strategy for insecticide resistance and screening of new insecticide molecules, it is important to understand the three-dimensional structure of insecticide-binding domain of VGSC and its molecular interaction with insecticides. We constructed a theoretical model of ion transport domain–II of VGSC from mosquitoes, Culex quinquefasciatus . The stereochemistry of the model shows 91.1% residues are in the most favored region. Docking studies with DDT and deltamethrin indicated that deltamethrin showed interaction with Thr 929 , Met 918 , Ile 936 , Cys 933 , Leu 925 , Glu 881 , Met 857 and Gly 866 and DDT showed interaction with Ile 936 , Thr 929 , Ser 878 , Phe 863 , Gln 864 , Trp 861 and Met 857 . We also predicted that mutation of Thr 929 should confer resistance to both DDT and deltamethrin.
电压门控钠通道α亚基的硅模拟以了解蚊子体内杀虫剂的结合模拟
电压门控钠通道(VGSC)是结合不同杀虫剂的关键通道,在杀虫剂抗性中起关键作用。滴滴涕和拟除虫菊酯抗性的一个重要机制被称为敲低抗性(kdr),它是由钠通道IIS6结构域的突变引起的。了解VGSC结合域的三维结构及其与杀虫剂的分子相互作用,对获得更好的抗药性管理策略和筛选新的杀虫剂分子具有重要意义。建立了致倦库蚊VGSC离子传输结构域ii的理论模型。模型的立体化学表明91.1%的残基位于最有利区。滴滴涕与溴氰菊酯的对接研究表明,溴氰菊酯与Thr 929、Met 918、Ile 936、Cys 933、Leu 925、Glu 881、Met 857和Gly 866互作,滴滴涕与Ile 936、Thr 929、Ser 878、Phe 863、Gln 864、Trp 861和Met 857互作。我们还预测Thr 929突变应该同时具有对DDT和溴氰菊酯的抗性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信