Generalized 𝜓-Geraghty-Zamfirescu Contraction Pairs in b-metric Spaces

Pub Date : 2021-01-01 DOI:10.5666/KMJ.2021.61.2.279
J. R. Morales, E. Rojas
{"title":"Generalized 𝜓-Geraghty-Zamfirescu Contraction Pairs in b-metric Spaces","authors":"J. R. Morales, E. Rojas","doi":"10.5666/KMJ.2021.61.2.279","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to introduce a class of contractive pairs of mappings satisfying a Zamfirescu-type inequality, but controlled with altering distance functions and with parameters satisfying the so-called Geraghty condition in the framework of b-metric spaces. For this class of mappings we prove the existence of points of coincidence, the convergence and stability of the Jungck, Jungck-Mann and Jungck-Ishikawa iterative processes and the existence and uniqueness of its common fixed points. 1. Motivation In 1922, S. Banach [4] established his famous and fundamental result in the metric fixed point theory as follows: Theorem 1.1.(Banach Contraction Principle) Let (M, d) be a complete metric space and let S : M −→ M be a Banach contraction, that is, S satisfies that there exists α ∈ (0, 1) such that d(Sx, Sy) ≤ αd(x, y) (z1) for all x, y ∈M. Then, S has a unique fixed point in M. Notice that Banach’s contractions are continuous mappings, so, in the spirit to extend the BCP, in 1968, R. Kannan [11] introduced a new class of contractive mappings admitting discontinuous functions, as follows. * Corresponding Author. Received September 13, 2020; revised January 15, 2021; accepted January 19, 2021. 2020 Mathematics Subject Classification: 47H09, 47H10, 47J25.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5666/KMJ.2021.61.2.279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this paper is to introduce a class of contractive pairs of mappings satisfying a Zamfirescu-type inequality, but controlled with altering distance functions and with parameters satisfying the so-called Geraghty condition in the framework of b-metric spaces. For this class of mappings we prove the existence of points of coincidence, the convergence and stability of the Jungck, Jungck-Mann and Jungck-Ishikawa iterative processes and the existence and uniqueness of its common fixed points. 1. Motivation In 1922, S. Banach [4] established his famous and fundamental result in the metric fixed point theory as follows: Theorem 1.1.(Banach Contraction Principle) Let (M, d) be a complete metric space and let S : M −→ M be a Banach contraction, that is, S satisfies that there exists α ∈ (0, 1) such that d(Sx, Sy) ≤ αd(x, y) (z1) for all x, y ∈M. Then, S has a unique fixed point in M. Notice that Banach’s contractions are continuous mappings, so, in the spirit to extend the BCP, in 1968, R. Kannan [11] introduced a new class of contractive mappings admitting discontinuous functions, as follows. * Corresponding Author. Received September 13, 2020; revised January 15, 2021; accepted January 19, 2021. 2020 Mathematics Subject Classification: 47H09, 47H10, 47J25.
分享
查看原文
b-度量空间中的广义𝜓-Geraghty-Zamfirescu收缩对
本文的目的是在b-度量空间的框架中,引入一类满足zamfirescue型不等式,但由改变距离函数和参数满足Geraghty条件控制的映射的压缩对。对于这类映射,证明了合点的存在性,Jungck、Jungck- mann和Jungck- ishikawa迭代过程的收敛性和稳定性,以及它的公共不动点的存在性和唯一性。1. 1922年,S. Banach[4]在度量不动点理论中建立了他著名的基本结果:定理1.1。设(M, d)是一个完备度量空间,设S: M−→M是一个Banach收缩,即S满足存在α∈(0,1)使得对于所有x, y∈M, d(Sx, Sy)≤αd(x, y) (z1)。则S在m中有一个唯一不动点。注意到Banach的收缩是连续映射,因此,为了推广BCP, 1968年R. Kannan[11]引入了一类新的允许不连续函数的收缩映射,如下所示。*通讯作者。收于2020年9月13日;2021年1月15日修订;2021年1月19日接受。2020数学学科分类:47H09、47H10、47J25。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信