Curvature Properties of 𝜂-Ricci Solitons on Para-Kenmotsu Manifolds

Pub Date : 2019-01-01 DOI:10.5666/KMJ.2019.59.1.149
Abhishek Singh, S. Kishor
{"title":"Curvature Properties of 𝜂-Ricci Solitons on Para-Kenmotsu Manifolds","authors":"Abhishek Singh, S. Kishor","doi":"10.5666/KMJ.2019.59.1.149","DOIUrl":null,"url":null,"abstract":"In the present paper, we study curvature properties of η-Ricci solitons on para-Kenmotsu manifolds. We obtain some results of η-Ricci solitons on para-Kenmotsu manifolds satisfying R(ξ,X).C = 0, R(ξ,X).M̃ = 0, R(ξ,X).P = 0, R(ξ,X).C̃ = 0 and R(ξ,X).H = 0, where C, M̃ , P , C̃ and H are a quasi-conformal curvature tensor, a M -projective curvature tensor, a pseudo-projective curvature tensor, and a concircular curvature tensor and conharmonic curvature tensor, respectively.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5666/KMJ.2019.59.1.149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In the present paper, we study curvature properties of η-Ricci solitons on para-Kenmotsu manifolds. We obtain some results of η-Ricci solitons on para-Kenmotsu manifolds satisfying R(ξ,X).C = 0, R(ξ,X).M̃ = 0, R(ξ,X).P = 0, R(ξ,X).C̃ = 0 and R(ξ,X).H = 0, where C, M̃ , P , C̃ and H are a quasi-conformal curvature tensor, a M -projective curvature tensor, a pseudo-projective curvature tensor, and a concircular curvature tensor and conharmonic curvature tensor, respectively.
分享
查看原文
Para-Kenmotsu流形上𝜂-Ricci孤子的曲率性质
本文研究了拟kenmotsu流形上的η-Ricci孤子的曲率性质。得到了拟kenmotsu流形上满足R(ξ,X)、c = 0, R(ξ,X)的η-Ricci孤子的一些结果。M³= 0,r (ξ, x)P = 0, R(ξ,X).C ω = 0, R(ξ,X).H ω = 0,其中C ω、M ω、P、C ω、H分别是拟共形曲率张量、M -射影曲率张量、伪射影曲率张量、共圆曲率张量、共调和曲率张量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信