Reconfiguring k-colourings of Complete Bipartite Graphs

Pub Date : 2016-09-23 DOI:10.5666/KMJ.2016.56.3.647
Marcel Celaya, Kelly Choo, G. MacGillivray, K. Seyffarth
{"title":"Reconfiguring k-colourings of Complete Bipartite Graphs","authors":"Marcel Celaya, Kelly Choo, G. MacGillivray, K. Seyffarth","doi":"10.5666/KMJ.2016.56.3.647","DOIUrl":null,"url":null,"abstract":"Let H be a graph, and k ≥ χ(H) an integer. We say that H has a cyclic Gray code of k-colourings if and only if it is possible to list all its k-colourings in such a way that consecutive colourings, including the last and the first, agree on all vertices of H except one. The Gray code number of H is the least integer k0(H) such that H has a cyclic Gray code of its k-colourings for all k ≥ k0(H). For complete bipartite graphs, we prove that k0(K`,r) = 3 when both ` and r are odd, and k0(K`,r) = 4 otherwise.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5666/KMJ.2016.56.3.647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Let H be a graph, and k ≥ χ(H) an integer. We say that H has a cyclic Gray code of k-colourings if and only if it is possible to list all its k-colourings in such a way that consecutive colourings, including the last and the first, agree on all vertices of H except one. The Gray code number of H is the least integer k0(H) such that H has a cyclic Gray code of its k-colourings for all k ≥ k0(H). For complete bipartite graphs, we prove that k0(K`,r) = 3 when both ` and r are odd, and k0(K`,r) = 4 otherwise.
分享
查看原文
完全二部图的k-着色的重构
设H为图,k≥χ(H)为整数。我们说H有k个着色的循环Gray编码,当且仅当有可能列出它的所有k个着色,使得连续着色,包括最后一个和第一个,在H的所有顶点上一致,除了一个。H的Gray码数是最小的整数k0(H),使得H对所有k≥k0(H)都有其k色的循环Gray码。对于完全二部图,我们证明了当'和r都是奇数时k0(K ',r) = 3,否则k0(K ',r) = 4。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信