On the Numbers of Palindromes

Pub Date : 2016-06-23 DOI:10.5666/KMJ.2016.56.2.349
S. Bang, Yan-Quan Feng, Jaeun Lee
{"title":"On the Numbers of Palindromes","authors":"S. Bang, Yan-Quan Feng, Jaeun Lee","doi":"10.5666/KMJ.2016.56.2.349","DOIUrl":null,"url":null,"abstract":"For any integer n ≥ 2, each palindrome of n induces a circulant graph of order n. It is known that for each integer n ≥ 2, there is a one-to-one correspondence between the set of (resp. aperiodic) palindromes of n and the set of (resp. connected) circulant graphs of order n (cf. [2]). This bijection gives a one-to-one correspondence of the palindromes σ with gcd(σ) = 1 to the connected circulant graphs. It was also shown that the number of palindromes σ of n with gcd(σ) = 1 is the same number of aperiodic palindromes of n. Let an (resp. bn) be the number of aperiodic palindromes σ of n with gcd(σ) = 1 (resp. gcd(σ) ̸= 1). Let cn (resp. dn) be the number of periodic palindromes σ of n with gcd(σ) = 1 (resp. gcd(σ) ̸= 1). In this paper, we calculate the numbers an, bn, cn, dn in two ways. In Theorem 2.3, we find recurrence relations for an, bn, cn, dn in terms of ad for d|n and d ̸= n. Afterwards, we find formulae for an, bn, cn, dn explicitly in Theorem 2.5.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5666/KMJ.2016.56.2.349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For any integer n ≥ 2, each palindrome of n induces a circulant graph of order n. It is known that for each integer n ≥ 2, there is a one-to-one correspondence between the set of (resp. aperiodic) palindromes of n and the set of (resp. connected) circulant graphs of order n (cf. [2]). This bijection gives a one-to-one correspondence of the palindromes σ with gcd(σ) = 1 to the connected circulant graphs. It was also shown that the number of palindromes σ of n with gcd(σ) = 1 is the same number of aperiodic palindromes of n. Let an (resp. bn) be the number of aperiodic palindromes σ of n with gcd(σ) = 1 (resp. gcd(σ) ̸= 1). Let cn (resp. dn) be the number of periodic palindromes σ of n with gcd(σ) = 1 (resp. gcd(σ) ̸= 1). In this paper, we calculate the numbers an, bn, cn, dn in two ways. In Theorem 2.3, we find recurrence relations for an, bn, cn, dn in terms of ad for d|n and d ̸= n. Afterwards, we find formulae for an, bn, cn, dn explicitly in Theorem 2.5.
分享
查看原文
论回文数
对于任意整数n≥2,每个n的回文都可以导出一个n阶的循环图。已知对于每一个整数n≥2,(resp.)n的非周期性回文和(p.)的集合。n阶的连通循环图(参见[2])。该双射给出了gcd(σ) = 1时回文σ与连通循环图的一一对应关系。还证明了当gcd(σ) = 1时,n的回文数σ与n的非周期回文数相同。当gcd(σ) = 1时,Bn为n的非周期回文数σ。gcd(σ) σ = 1)。Dn)为周期回文σ (n)的个数,且gcd(σ) = 1。在本文中,我们用两种方法计算了数字an, bn, cn, dn。在定理2.3中,我们找到了an, bn, cn, dn关于ad的递归关系,对于d b| n和d ε = n,然后,我们在定理2.5中明确地找到了an, bn, cn, dn的公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信