On the Numbers of Palindromes

IF 0.6 Q3 MATHEMATICS
S. Bang, Yan-Quan Feng, Jaeun Lee
{"title":"On the Numbers of Palindromes","authors":"S. Bang, Yan-Quan Feng, Jaeun Lee","doi":"10.5666/KMJ.2016.56.2.349","DOIUrl":null,"url":null,"abstract":"For any integer n ≥ 2, each palindrome of n induces a circulant graph of order n. It is known that for each integer n ≥ 2, there is a one-to-one correspondence between the set of (resp. aperiodic) palindromes of n and the set of (resp. connected) circulant graphs of order n (cf. [2]). This bijection gives a one-to-one correspondence of the palindromes σ with gcd(σ) = 1 to the connected circulant graphs. It was also shown that the number of palindromes σ of n with gcd(σ) = 1 is the same number of aperiodic palindromes of n. Let an (resp. bn) be the number of aperiodic palindromes σ of n with gcd(σ) = 1 (resp. gcd(σ) ̸= 1). Let cn (resp. dn) be the number of periodic palindromes σ of n with gcd(σ) = 1 (resp. gcd(σ) ̸= 1). In this paper, we calculate the numbers an, bn, cn, dn in two ways. In Theorem 2.3, we find recurrence relations for an, bn, cn, dn in terms of ad for d|n and d ̸= n. Afterwards, we find formulae for an, bn, cn, dn explicitly in Theorem 2.5.","PeriodicalId":46188,"journal":{"name":"Kyungpook Mathematical Journal","volume":"56 1","pages":"349-355"},"PeriodicalIF":0.6000,"publicationDate":"2016-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyungpook Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5666/KMJ.2016.56.2.349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For any integer n ≥ 2, each palindrome of n induces a circulant graph of order n. It is known that for each integer n ≥ 2, there is a one-to-one correspondence between the set of (resp. aperiodic) palindromes of n and the set of (resp. connected) circulant graphs of order n (cf. [2]). This bijection gives a one-to-one correspondence of the palindromes σ with gcd(σ) = 1 to the connected circulant graphs. It was also shown that the number of palindromes σ of n with gcd(σ) = 1 is the same number of aperiodic palindromes of n. Let an (resp. bn) be the number of aperiodic palindromes σ of n with gcd(σ) = 1 (resp. gcd(σ) ̸= 1). Let cn (resp. dn) be the number of periodic palindromes σ of n with gcd(σ) = 1 (resp. gcd(σ) ̸= 1). In this paper, we calculate the numbers an, bn, cn, dn in two ways. In Theorem 2.3, we find recurrence relations for an, bn, cn, dn in terms of ad for d|n and d ̸= n. Afterwards, we find formulae for an, bn, cn, dn explicitly in Theorem 2.5.
论回文数
对于任意整数n≥2,每个n的回文都可以导出一个n阶的循环图。已知对于每一个整数n≥2,(resp.)n的非周期性回文和(p.)的集合。n阶的连通循环图(参见[2])。该双射给出了gcd(σ) = 1时回文σ与连通循环图的一一对应关系。还证明了当gcd(σ) = 1时,n的回文数σ与n的非周期回文数相同。当gcd(σ) = 1时,Bn为n的非周期回文数σ。gcd(σ) σ = 1)。Dn)为周期回文σ (n)的个数,且gcd(σ) = 1。在本文中,我们用两种方法计算了数字an, bn, cn, dn。在定理2.3中,我们找到了an, bn, cn, dn关于ad的递归关系,对于d b| n和d ε = n,然后,我们在定理2.5中明确地找到了an, bn, cn, dn的公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
期刊介绍: Kyungpook Mathematical Journal is an international journal devoted to significant research concerning all aspects of mathematics. The journal has a preference for papers having a broad interest. One volume of the journal is published every year. Each volume until volume 42 consisted of two issues; however, starting from volume 43(2003), each volume consists of four issues. Authors should strive for expository clarity and good literary style. Manuscripts should be prepared as follows. The first page must consist of a short descriptive title, followed by the name(s) and address(es) of the author(s) along with an electronic address if available.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信