Finite-dimensional representations constructed from random walks

IF 1.1 3区 数学 Q1 MATHEMATICS
A. Erschler, N. Ozawa
{"title":"Finite-dimensional representations constructed from random walks","authors":"A. Erschler, N. Ozawa","doi":"10.4171/CMH/444","DOIUrl":null,"url":null,"abstract":"Given a $1$-cocycle $b$ with coefficients in an orthogonal representation, we show that any finite dimensional summand of $b$ is cohomologically trivial if and only if $\\| b(X_n) \\|^2/n$ tends to a constant in probability, where $X_n$ is the trajectory of the random walk $(G,\\mu)$. As a corollary, we obtain sufficient conditions for $G$ to satisfy Shalom's property $H_{\\mathrm{FD}}$. Another application is a convergence to a constant in probability of $\\mu^{*n}(e) -\\mu^{*n}(g)$, $n\\gg m$, normalized by its average with respect to $\\mu^{*m}$, for any finitely generated amenable group without infinite virtually Abelian quotients. Finally, we show that the harmonic equivariant mapping of $G$ to a Hilbert space obtained as an $U$-ultralimit of normalized $\\mu^{*n}- g \\mu^{*n}$ can depend on the ultrafilter $U$ for some groups.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2016-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/CMH/444","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentarii Mathematici Helvetici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/CMH/444","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 14

Abstract

Given a $1$-cocycle $b$ with coefficients in an orthogonal representation, we show that any finite dimensional summand of $b$ is cohomologically trivial if and only if $\| b(X_n) \|^2/n$ tends to a constant in probability, where $X_n$ is the trajectory of the random walk $(G,\mu)$. As a corollary, we obtain sufficient conditions for $G$ to satisfy Shalom's property $H_{\mathrm{FD}}$. Another application is a convergence to a constant in probability of $\mu^{*n}(e) -\mu^{*n}(g)$, $n\gg m$, normalized by its average with respect to $\mu^{*m}$, for any finitely generated amenable group without infinite virtually Abelian quotients. Finally, we show that the harmonic equivariant mapping of $G$ to a Hilbert space obtained as an $U$-ultralimit of normalized $\mu^{*n}- g \mu^{*n}$ can depend on the ultrafilter $U$ for some groups.
由随机游走构造的有限维表示
给定一个系数为正交表示的$1$-环$b$,我们证明了$b$的任何有限维和当且仅当$\| b(X_n) \|^2/n$在概率上趋于常数,其中$X_n$是随机漫步$(G,\mu)$的轨迹。作为推论,我们得到了$G$满足Shalom的性质$H_{\ mathm {FD}}$的充分条件。另一个应用是收敛于一个概率常数$\mu^{*n}(e) -\mu^{*n}(g)$, $n\gg m$,由其对$\mu^{*m}$的平均值归一化,适用于任何有限生成的没有无限虚阿贝尔商的可服从群。最后,我们证明了$G$到Hilbert空间的调和等变映射作为归一化$\mu^{*n}- G \mu^{*n}$的$U$-超极限可以依赖于某些群的超滤波器$U$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: Commentarii Mathematici Helvetici (CMH) was established on the occasion of a meeting of the Swiss Mathematical Society in May 1928. The first volume was published in 1929. The journal soon gained international reputation and is one of the world''s leading mathematical periodicals. Commentarii Mathematici Helvetici is covered in: Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信