Lagrangian isotopies and symplectic function theory

IF 1.1 3区 数学 Q1 MATHEMATICS
Michael Entov, Y. Ganor, Cedric Membrez
{"title":"Lagrangian isotopies and symplectic function theory","authors":"Michael Entov, Y. Ganor, Cedric Membrez","doi":"10.4171/CMH/451","DOIUrl":null,"url":null,"abstract":"We study two related invariants of Lagrangian submanifolds in symplectic manifolds. For a Lagrangian torus these invariants are functions on the first cohomology of the torus. The first invariant is of topological nature and is related to the study of Lagrangian isotopies with a given Lagrangian flux. More specifically, it measures the length of straight paths in the first cohomology that can be realized as the Lagrangian flux of a Lagrangian isotopy. The second invariant is of analytical nature and comes from symplectic function theory. It is defined for Lagrangian submanifolds admitting fibrations over a circle and has a dynamical interpretation. We partially compute these invariants for certain Lagrangian tori.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2016-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/CMH/451","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentarii Mathematici Helvetici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/CMH/451","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

We study two related invariants of Lagrangian submanifolds in symplectic manifolds. For a Lagrangian torus these invariants are functions on the first cohomology of the torus. The first invariant is of topological nature and is related to the study of Lagrangian isotopies with a given Lagrangian flux. More specifically, it measures the length of straight paths in the first cohomology that can be realized as the Lagrangian flux of a Lagrangian isotopy. The second invariant is of analytical nature and comes from symplectic function theory. It is defined for Lagrangian submanifolds admitting fibrations over a circle and has a dynamical interpretation. We partially compute these invariants for certain Lagrangian tori.
拉格朗日同位素与辛函数理论
研究了辛流形中拉格朗日子流形的两个相关不变量。对于拉格朗日环面,这些不变量是环面第一上同调上的函数。第一个不变量具有拓扑性质,与给定拉格朗日通量的拉格朗日同位素研究有关。更具体地说,它测量了第一上同调中直线路径的长度,可以用拉格朗日同位素的拉格朗日通量来实现。第二个不变量是解析性质的,来自辛函数理论。它被定义为允许在圆上振动的拉格朗日子流形,并具有动力学解释。我们对某些拉格朗日环面部分地计算了这些不变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: Commentarii Mathematici Helvetici (CMH) was established on the occasion of a meeting of the Swiss Mathematical Society in May 1928. The first volume was published in 1929. The journal soon gained international reputation and is one of the world''s leading mathematical periodicals. Commentarii Mathematici Helvetici is covered in: Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信