Fundamental domains and generators for lattice Veech groups

IF 1.1 3区 数学 Q1 MATHEMATICS
R. E. Mukamel
{"title":"Fundamental domains and generators for lattice Veech groups","authors":"R. E. Mukamel","doi":"10.4171/CMH/406","DOIUrl":null,"url":null,"abstract":"The moduli space QMg of non-zero genus g quadratic differentials has a natural action of G D GL 2 .R/= ̋ ̇ 1 0 0 1 ̨ . The Veech group PSL.X; q/ is the stabilizer of .X; q/ 2 QMg in G. We describe a new algorithm for finding elements of PSL.X; q/ which, for lattice Veech groups, can be used to compute a fundamental domain and generators. Using our algorithm, we give the first explicit examples of generators and fundamental domains for non-arithmetic Veech groups where the genus of H=PSL.X; q/ is greater than zero. Mathematics Subject Classification (2010). 32G15, 30F30.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/CMH/406","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentarii Mathematici Helvetici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/CMH/406","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 20

Abstract

The moduli space QMg of non-zero genus g quadratic differentials has a natural action of G D GL 2 .R/= ̋ ̇ 1 0 0 1 ̨ . The Veech group PSL.X; q/ is the stabilizer of .X; q/ 2 QMg in G. We describe a new algorithm for finding elements of PSL.X; q/ which, for lattice Veech groups, can be used to compute a fundamental domain and generators. Using our algorithm, we give the first explicit examples of generators and fundamental domains for non-arithmetic Veech groups where the genus of H=PSL.X; q/ is greater than zero. Mathematics Subject Classification (2010). 32G15, 30F30.
晶格Veech群的基本定义域和生成
非零格g二次微分的模空间QMg具有g D GL 2的自然作用,r /= 1 0 0 0 1。Veech集团PSL.X;q/是。x的稳定器;我们描述了一种寻找PSL.X元素的新算法;q/对于晶格Veech群,它可以用来计算基本域和生成器。利用我们的算法,我们首次给出了非算术Veech群的生成子和基本域的显式例子,其中H的属=PSL.X;Q /大于零。数学学科分类(2010)。32 g15, 30 + 30。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: Commentarii Mathematici Helvetici (CMH) was established on the occasion of a meeting of the Swiss Mathematical Society in May 1928. The first volume was published in 1929. The journal soon gained international reputation and is one of the world''s leading mathematical periodicals. Commentarii Mathematici Helvetici is covered in: Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信