Parallel Algorithms for Residue Scaling and Error Correction in Residue Arithmetic

H. Lo, Ting-wei Lin
{"title":"Parallel Algorithms for Residue Scaling and Error Correction in Residue Arithmetic","authors":"H. Lo, Ting-wei Lin","doi":"10.4236/WET.2013.44029","DOIUrl":null,"url":null,"abstract":"In this paper, we present two new algorithms in residue number systems for scaling and error correction. The first algorithm is the Cyclic Property of Residue-Digit Difference (CPRDD). It is used to speed up the residue multiple error correction due to its parallel processes. The second is called the Target Race Distance (TRD). It is used to speed up residue scaling. Both of these two algorithms are used without the need for Mixed Radix Conversion (MRC) or Chinese Residue Theorem (CRT) techniques, which are time consuming and require hardware complexity. Furthermore, the residue scaling can be performed in parallel for any combination of moduli set members without using lookup tables.","PeriodicalId":68067,"journal":{"name":"无线工程与技术(英文)","volume":"04 1","pages":"198-213"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"无线工程与技术(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/WET.2013.44029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we present two new algorithms in residue number systems for scaling and error correction. The first algorithm is the Cyclic Property of Residue-Digit Difference (CPRDD). It is used to speed up the residue multiple error correction due to its parallel processes. The second is called the Target Race Distance (TRD). It is used to speed up residue scaling. Both of these two algorithms are used without the need for Mixed Radix Conversion (MRC) or Chinese Residue Theorem (CRT) techniques, which are time consuming and require hardware complexity. Furthermore, the residue scaling can be performed in parallel for any combination of moduli set members without using lookup tables.
残数缩放的并行算法及残数算法中的误差校正
本文提出了两种新的残数系统缩放和纠错算法。第一个算法是余数差的循环特性(CPRDD)。该方法利用其并行处理的特点,提高了残差多重误差的校正速度。第二个是目标比赛距离(TRD)。它被用来加速残渣的结垢。这两种算法都不需要混合基数转换(MRC)或中国剩余定理(CRT)技术,这两种算法耗时且硬件复杂度高。此外,残数缩放可以在不使用查找表的情况下对模集合成员的任何组合并行执行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
118
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信