Blind Modulation Recognition in Wireless MC-CDMA Systems Using a Support Vector Machine Classifier

Mohamed Keshk, El-Sayed M. El-Rabie, F. E. El-Samie, Mohammed Abd El-Naby
{"title":"Blind Modulation Recognition in Wireless MC-CDMA Systems Using a Support Vector Machine Classifier","authors":"Mohamed Keshk, El-Sayed M. El-Rabie, F. E. El-Samie, Mohammed Abd El-Naby","doi":"10.4236/WET.2013.43022","DOIUrl":null,"url":null,"abstract":"Automatic Digital Modulation Recognition (ADMR) is becoming an interesting problem with various civil and military applications. In this paper, an ADMR algorithm in Multi-Carrier Code Division Multiple Access (MC-CDMA) systems using Discrete Transforms (DTs) and Mel-Frequency Cepstral Coefficients (MFCCs) is proposed. This algorithm uses various DT techniques such as the Discrete Wavelet Transform (DWT), Discrete Cosine Transform (DCT) and Discrete Sine Transform (DST) with MFCCs to extract features from the modulated signal and a Support Vector Machine (SVM) to classify the modulation orders. The proposed algorithm avoids over fitting and local optimal problems that appear in Artificial Neural Networks (ANNs). Simulation results shows the classifier is capable of recognizing the modulation scheme with high accuracy up to 90% - 100% using DWT, DCT and DST for some modulation schemes over a wide Signal-to-Noise Ratio (SNR) range in the presence of Additive White Gaussian Noise (AWGN) and Rayleigh fading channel, particularly at a low Signal-to-Noise ratios (SNRs).","PeriodicalId":68067,"journal":{"name":"无线工程与技术(英文)","volume":"2013 1","pages":"145-153"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"无线工程与技术(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/WET.2013.43022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Automatic Digital Modulation Recognition (ADMR) is becoming an interesting problem with various civil and military applications. In this paper, an ADMR algorithm in Multi-Carrier Code Division Multiple Access (MC-CDMA) systems using Discrete Transforms (DTs) and Mel-Frequency Cepstral Coefficients (MFCCs) is proposed. This algorithm uses various DT techniques such as the Discrete Wavelet Transform (DWT), Discrete Cosine Transform (DCT) and Discrete Sine Transform (DST) with MFCCs to extract features from the modulated signal and a Support Vector Machine (SVM) to classify the modulation orders. The proposed algorithm avoids over fitting and local optimal problems that appear in Artificial Neural Networks (ANNs). Simulation results shows the classifier is capable of recognizing the modulation scheme with high accuracy up to 90% - 100% using DWT, DCT and DST for some modulation schemes over a wide Signal-to-Noise Ratio (SNR) range in the presence of Additive White Gaussian Noise (AWGN) and Rayleigh fading channel, particularly at a low Signal-to-Noise ratios (SNRs).
基于支持向量机分类器的无线MC-CDMA系统盲调制识别
自动数字调制识别(ADMR)在各种民用和军事应用中成为一个有趣的问题。提出了一种基于离散变换和mel频率倒谱系数的多载波码分多址(MC-CDMA)系统ADMR算法。该算法使用离散小波变换(DWT)、离散余弦变换(DCT)和离散正弦变换(DST)等多种DT技术,结合mfc从调制信号中提取特征,并使用支持向量机(SVM)对调制顺序进行分类。该算法避免了人工神经网络中存在的过拟合和局部最优问题。仿真结果表明,对于存在加性高斯白噪声(AWGN)和瑞利衰落信道的宽信噪比(SNR)范围内的一些调制方案,特别是在低信噪比(SNRs)下,使用DWT、DCT和DST的分类器能够以高达90% - 100%的准确率识别调制方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
118
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信