On the Total Chromatic Edge Stability Number and the Total Chromatic Subdivision Number of Graphs

IF 1 Q1 MATHEMATICS
A. Kemnitz, M. Marangio
{"title":"On the Total Chromatic Edge Stability Number and the Total Chromatic Subdivision Number of Graphs","authors":"A. Kemnitz, M. Marangio","doi":"10.47443/dml.2021.111","DOIUrl":null,"url":null,"abstract":"A proper total coloring of a graph G is an assignment of colors to the vertices and edges of G (together called the elements of G) such that neighbored elements—two adjacent vertices or two adjacent edges or a vertex and an incident edge—are colored differently. The total chromatic number χ′′(G) of G is defined as the minimum number of colors in a proper total coloring of G. In this paper, we study the stability of the total chromatic number of a graph with respect to two operations, namely removing edges and subdividing edges, which leads to the following two invariants. (i) The total chromatic edge stability number or χ′′-edge stability number esχ′′(G) is the minimum number of edges of G whose removal results in a graphH ⊆ G with χ′′(H) 6= χ′′(G) or with E(H) = ∅. (ii) The total chromatic subdivision number or χ′′-subdivision number sdχ′′(G) is the minimum number of edges of G whose subdivision results in a graph H ⊆ G with χ′′(H) 6= χ′′(G) or with E(H) = ∅. We prove general lower and upper bounds for esχ′′(G). Moreover, we determine esχ′′(G) and sdχ′′(G) for some classes of graphs.","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2021.111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

A proper total coloring of a graph G is an assignment of colors to the vertices and edges of G (together called the elements of G) such that neighbored elements—two adjacent vertices or two adjacent edges or a vertex and an incident edge—are colored differently. The total chromatic number χ′′(G) of G is defined as the minimum number of colors in a proper total coloring of G. In this paper, we study the stability of the total chromatic number of a graph with respect to two operations, namely removing edges and subdividing edges, which leads to the following two invariants. (i) The total chromatic edge stability number or χ′′-edge stability number esχ′′(G) is the minimum number of edges of G whose removal results in a graphH ⊆ G with χ′′(H) 6= χ′′(G) or with E(H) = ∅. (ii) The total chromatic subdivision number or χ′′-subdivision number sdχ′′(G) is the minimum number of edges of G whose subdivision results in a graph H ⊆ G with χ′′(H) 6= χ′′(G) or with E(H) = ∅. We prove general lower and upper bounds for esχ′′(G). Moreover, we determine esχ′′(G) and sdχ′′(G) for some classes of graphs.
图的全色边稳定数和全色细分数
图G的适当全着色是对G的顶点和边(统称为G的元素)的颜色分配,使得相邻的元素——两个相邻的顶点或两个相邻的边或一个顶点和一条关联边——的颜色不同。G的总色数χ”(G)被定义为G的适当全着色的最小色数。本文研究了图的总色数关于消边和细分边两种操作的稳定性,得到了以下两个不变量。(i)总色边稳定数或χ”-边稳定数esχ”(G)是消去后得到χ”(H) 6= χ”(G)或E(H) =∅的图H的G的最小边数。(ii)总色子划分数或χ”-子划分数sdχ”(G)是图H的最小边数,该图H的子划分得到χ”(H) 6= χ”(G)或E(H) =∅。我们证明了esχ ' ' (G)的一般下界和上界。此外,我们还确定了某些图类的esχ”(G)和sdχ”(G)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics Letters
Discrete Mathematics Letters Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.50
自引率
12.50%
发文量
47
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信