A Numerical Simulation of Transport Layer Thickness Effect in Tin-Based Perovskite Solar Cell

IF 0.7 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
A. Azmi, Muhammad Noor, Mohd. Ibrahim, F. Ahmad
{"title":"A Numerical Simulation of Transport Layer Thickness Effect in Tin-Based Perovskite Solar Cell","authors":"A. Azmi, Muhammad Noor, Mohd. Ibrahim, F. Ahmad","doi":"10.5455/jjee.204-1659340463","DOIUrl":null,"url":null,"abstract":"This paper investigates the performance of a planar n-i-p perovskite solar cells (PSC) with lead-free perovskite absorber for three different metal oxides serving as the electron transport layer (ETL). A tin (Sn) based PSCs - with i) zinc oxide (ZnO), ii) titanium oxide (TiO2) and iii) tin oxide (SnO2) as the ETL, and spiro-MeOTAD as the hole transport layer (HTL) - are modeled and simulated using a 1-dimensional numerical software (SCAPS 1-D). Thicknesses of both the methylammonium tin iodide (CH3NH3SnI3) absorber and the ETL are varied for the purpose of achieving the optimum power conversion efficiency (PCE). For all metal oxide candidates, thickness of lead-free perovskite absorber layer is varied from 400 nm to 1500 nm. The obtained results show that the optimum recorded PCE is achieved at 900 nm. Moreover, the highest PCE value of 8.10% is observed for 80 nm thickness of SnO2 compared to 8.05% for ZnO and 7.99% for TiO2. Additionally, the results unveil that for a constant HTL thickness of 80 nm and ETL thickness increment up to 300 nm, the PCE is slightly reduced between 0.12% and 0.99% for all ETLs. We believe that this is the first simulation effort that evaluates the effect of transport layer thickness on the performance of lead-free PSC, hoping that the findings will be useful for the research community, particularly for those working in the field of solar cells fabrication and development.","PeriodicalId":29729,"journal":{"name":"Jordan Journal of Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5455/jjee.204-1659340463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the performance of a planar n-i-p perovskite solar cells (PSC) with lead-free perovskite absorber for three different metal oxides serving as the electron transport layer (ETL). A tin (Sn) based PSCs - with i) zinc oxide (ZnO), ii) titanium oxide (TiO2) and iii) tin oxide (SnO2) as the ETL, and spiro-MeOTAD as the hole transport layer (HTL) - are modeled and simulated using a 1-dimensional numerical software (SCAPS 1-D). Thicknesses of both the methylammonium tin iodide (CH3NH3SnI3) absorber and the ETL are varied for the purpose of achieving the optimum power conversion efficiency (PCE). For all metal oxide candidates, thickness of lead-free perovskite absorber layer is varied from 400 nm to 1500 nm. The obtained results show that the optimum recorded PCE is achieved at 900 nm. Moreover, the highest PCE value of 8.10% is observed for 80 nm thickness of SnO2 compared to 8.05% for ZnO and 7.99% for TiO2. Additionally, the results unveil that for a constant HTL thickness of 80 nm and ETL thickness increment up to 300 nm, the PCE is slightly reduced between 0.12% and 0.99% for all ETLs. We believe that this is the first simulation effort that evaluates the effect of transport layer thickness on the performance of lead-free PSC, hoping that the findings will be useful for the research community, particularly for those working in the field of solar cells fabrication and development.
锡基钙钛矿太阳能电池输运层厚度效应的数值模拟
采用无铅钙钛矿吸收体制备平面n-i-p钙钛矿太阳能电池(PSC),研究了三种不同金属氧化物作为电子传输层(ETL)的性能。利用一维数值软件(SCAPS 1-D)对一种锡(Sn)基PSCs进行了建模和模拟,该PSCs以i)氧化锌(ZnO)、ii)氧化钛(TiO2)和iii)氧化锡(SnO2)为ETL, spiro-MeOTAD为空穴传输层(html)。为了获得最佳的功率转换效率(PCE),改变了甲基碘化锡铵(CH3NH3SnI3)吸收剂和ETL的厚度。对于所有候选金属氧化物,无铅钙钛矿吸收层的厚度从400 nm到1500 nm不等。结果表明,在900 nm处达到了记录的最佳PCE。此外,80nm厚度的SnO2的PCE值最高,为8.10%,而ZnO和TiO2的PCE值分别为8.05%和7.99%。此外,研究结果表明,当HTL厚度恒定为80 nm, ETL厚度增加到300 nm时,所有ETL的PCE都略有降低,在0.12%到0.99%之间。我们相信这是第一次模拟评估传输层厚度对无铅PSC性能的影响,希望这些发现对研究界有用,特别是对那些在太阳能电池制造和开发领域工作的人有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.20
自引率
14.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信